A geometric approach to acyclic orientations*

Richard Ehrenborg and Michael Slone

Abstract

The set of acyclic orientations of a connected graph with a given sink has a natural poset structure. We give a geometric proof of a result of Jim Propp: this poset is the disjoint union of distributive lattices.

Let G be a connected graph on the vertex set $[\underline{n}]=\{0\} \cup[n]$, where $[n]$ denotes the set $\{1, \ldots, n\}$. Let P denote the collection of acyclic orientations of G, and let P_{0} denote the collection of acyclic orientations of G with 0 as a sink. If Ω is an orientation in P with the vertex i as a source, we can obtain a new orientation Ω^{\prime} with i as a sink by firing the vertex i, reorienting all the edges adjacent to i towards i. The orientations Ω and Ω^{\prime} agree away from i.

A firing sequence from Ω to Ω^{\prime} in P consists of a sequence $\Omega=\Omega_{1}, \ldots, \Omega_{m+1}=\Omega^{\prime}$ of orientations and a function $F:[m] \longrightarrow[\underline{n}]$ such that for each $i \in[m]$, the orientation Ω_{i+1} is obtained from Ω_{i} by firing the vertex $F(i)$. We will abuse language by calling F itself a firing sequence. We make P into a preorder by writing $\Omega \leq \Omega^{\prime}$ if and only if there is a firing sequence from Ω to Ω^{\prime}. From the definition it is clear that P is reflexive and transitive. While P is only a preorder, P_{0} is a poset. By finiteness, antisymmetry can be verified by showing that firing sequences in P_{0} cannot be arbitrarily long. This is a consequence of the fact that neighbors of the distinguished sink 0 cannot fire. The proof depends on the following lemma.

Lemma 1. Let $F:[m] \longrightarrow[n]$ be a firing sequence for the graph G. If i and j are adjacent vertices in G, then

$$
\left|F^{-1}(i)\right| \leq\left|F^{-1}(j)\right|+1 .
$$

Proof. A vertex can fire only if it is a source. Firing the vertex i reverses the orientation of its edge to the vertex j. Hence the vertex i cannot fire again until the orientation is again reversed, which can only happen by firing j.

As a corollary, firing sequences have bounded length, implying that P_{0} is a poset.
Corollary 2. The preorder P_{0} of acyclic orientations with a distinguished sink is a poset.
Proof. Let $F:[m] \longrightarrow[n]$ be a firing sequence. By iterating the lemma, $\left|F^{-1}(i)\right| \leq d(0, i)-1$, so

$$
m=\sum_{i \in[n]}\left|F^{-1}(i)\right| \leq \sum_{i \in[n]}(d(0, i)-1) .
$$

Hence firing sequences cannot be arbitrarily long, implying that P_{0} is antisymmetric.

[^0]For a real number a, let $\lfloor a\rfloor$ denote the largest integer less than or equal to a. Similarly, let $\lceil a\rceil$ denote the least integer greater than or equal to a. Finally, let $\{a\}$ denote the fractional part of the real number a, that is, $\{a\}=a-\lfloor a\rfloor$. (It will be clear from the context if $\{a\}$ denotes the fractional part or the singleton set.) Observe that the range of the function $x \longmapsto\{x\}$ is the half open interval $[0,1)$.

Let $\widetilde{\mathcal{H}}=\widetilde{\mathcal{H}}(G)$ be the periodic graphic arrangement of the graph G, that is, $\widetilde{\mathcal{H}}$ is the collection of all hyperplanes of the form

$$
x_{i}=x_{j}+k
$$

where $i j$ is an edge in the graph G and k is an integer. This hyperplane arrangement cuts \mathbb{R}^{n+1} into open regions. Note that each region is translation-invariant in the direction $(1, \ldots, 1)$. Let C denote the complement of $\widetilde{\mathcal{H}}$, that is,

$$
C=\mathbb{R}^{n+1} \backslash \bigcup_{H \in \widetilde{\mathcal{H}}} H
$$

Define a map $\varphi: C \longrightarrow P$ from the complement of the periodic graphic arrangement to the preorder of acyclic orientations as follows. For a point $x=\left(x_{0}, \ldots, x_{n}\right)$ and an edge $i j$ observe that $\left\{x_{i}\right\} \neq\left\{x_{j}\right\}$ since the point does not lie on any hyperplane of the form $x_{i}=x_{j}+k$. Hence orient the edge $i j$ towards i if $\left\{x_{i}\right\}<\left\{x_{j}\right\}$ and towards j if the inequality is reversed. This defines the orientation $\varphi(x)$. Also note that this is an acyclic orientation, since no directed cycles can occur.

Let H_{0} be the coordinate hyperplane $\left\{x \in \mathbb{R}^{n+1}: x_{0}=0\right\}$. The map φ sends points of the intersection $C_{0}=C \cap H_{0}$ to acyclic orientations in P_{0}.

The real line \mathbb{R} is a distributive lattice; meet is minimum and join is maximum. Since \mathbb{R}^{n+1} is a product of copies of \mathbb{R}, it is also a distributive lattice, with meet and join given by componentwise minimum and maximum. That is, given two points in \mathbb{R}^{n}, say $x=\left(x_{0}, \ldots, x_{n}\right)$ and $y=\left(y_{0}, \ldots, y_{n}\right)$, their meet and join are given by

$$
x \wedge y=\left(\min \left(x_{0}, y_{0}\right), \ldots, \min \left(x_{n}, y_{n}\right)\right)
$$

and

$$
x \vee y=\left(\max \left(x_{0}, y_{0}\right), \ldots, \max \left(x_{n}, y_{n}\right)\right)
$$

respectively.
Lemma 3. Each region R in the complement C of the periodic graphic arrangement $\widetilde{\mathcal{H}}$ is a distributive sublattice of \mathbb{R}^{n+1}. Hence the intersection $R \cap H_{0}$, which is a region in C_{0}, is also a distributive sublattice of \mathbb{R}^{n+1}.

Proof. Since each region R is the intersection of slices of the form

$$
T=\left\{x \in \mathbb{R}: x_{i}+k<x_{j}<x_{i}+k+1\right\}
$$

it is enough to prove that each slice is a sublattice of \mathbb{R}^{n+1}. Let x and y be two points in the slice T. Then $\min \left(x_{i}, y_{i}\right)+k=\min \left(x_{i}+k, y_{i}+k\right)<\min \left(x_{j}, y_{j}\right)<\min \left(x_{i}+k+1, y_{i}+k+1\right)=\min \left(x_{i}, y_{i}\right)+k+1$, implying that $x \wedge y$ also lies in the slice T. A dual argument shows that the slice T is closed under the join operation. Thus the region R is a sublattice. Since distributivity is preserved under taking sublattices, it follows that R is a distributive sublattice of \mathbb{R}^{n+1}.

In the remainder of this paper we let R be a region in C_{0}.

Lemma 4. Consider the restriction $\left.\varphi\right|_{R}$ of the map φ to the region R. The inverse image of an acyclic orientation in P_{0} is of the form:

$$
R \cap\left(\{0\} \times \prod_{i=1}^{n}\left[a_{i}, a_{i}+1\right)\right)
$$

where each a_{i} is an integer. That is, the inverse image of an orientation is the intersection of the region R with a half-open lattice cube. Hence the inverse image is a sublattice of \mathbb{R}^{n+1}.

Proof. Assume that x and y lie in the region R. Define the integers a_{i} and b_{i} by $a_{i}=\left\lfloor x_{i}\right\rfloor$ and $b_{i}=\left\lfloor y_{i}\right\rfloor$. Hence the coordinate x_{i} lies in the half-open interval $\left[a_{i}, a_{i}+1\right)$ and the coordinate y_{i} lies in the half-open interval $\left[b_{i}, b_{i}+1\right)$. Lastly, assume that $\left.\varphi\right|_{R}$ maps x and y to the same acyclic orientation. The last condition implies that, for every edge $i j, 0 \leq x_{i}-a_{i}<x_{j}-a_{j}<1$ is equivalent to $0 \leq y_{i}-b_{i}<y_{j}-b_{j}<1$. Consider an edge that is directed from j to i. Since x and y both lie in the region R, there exists an integer k such that $x_{i}+k<x_{j}<x_{i}+k+1$ and $y_{i}+k<y_{j}<y_{i}+k+1$. Now we have that $a_{j}-a_{i}<x_{j}-x_{i}<k+1$. Furthermore, observe that $x_{j}-a_{j}-1<0 \leq x_{i}-a_{i}$. Hence $a_{j}-a_{i}>x_{j}-x_{i}-1>k-1$. Since $a_{j}-a_{i}$ is an integer, the two bounds implies that $a_{j}-a_{i}=k$. By similar reasoning we obtain that $b_{j}-b_{i}=k$.

Hence for every edge $i j$ we know that $a_{j}-a_{i}=b_{j}-b_{i}$. Since $a_{0}=b_{0}=0$ and the graph G is connected we obtain that $a_{i}=b_{i}$ for all vertices i.

Lemma 5. The restriction $\left.\varphi\right|_{R}: R \longrightarrow P_{0}$ is a poset homomorphism, that is, for two points y and z in the region R such that $y \leq z$ the order relation $\varphi(y) \leq \varphi(z)$ holds.

Proof. Since the region R is convex, the line segment from y to z is contained in R. Let a point x move continuously from y to z along this line segment and consider what happens with the associated acyclic orientations $\varphi(x)$. Note that each coordinate x_{i} is non-decreasing. When the point x crosses a hyperplane of the form $x_{i}=p$ where p is an integer, observe that the value $\left\{x_{i}\right\}$ approaches 1 and then jumps down to 0 . Hence the vertex i switches from being a source to being a sink, that is, the vertex i fires.

Observe that two adjacent nodes i and j cannot fire at the same time, since the intersection of the two hyperplanes $x_{i}=p$ and $x_{j}=q$ is contained in the hyperplane $x_{i}=x_{j}+(p-q)$ which is not in the region R.

Hence we obtain a firing sequence from the acyclic orientation $\varphi(y)$ to $\varphi(z)$, proving that $\varphi(y) \leq$ $\varphi(z)$.

Lemma 6. Let x be a point in the region R. Let Ω^{\prime} be an acyclic orientation comparable to $\Omega=\varphi(x)$ in the poset P_{0}. Then there exists a point z in the region of R as x such that $\varphi(z)=\Omega^{\prime}$.

Proof. It is enough to prove this for cover relations in the poset P. We begin by considering the case when Ω^{\prime} covers Ω in P. Thus Ω^{\prime} is obtained from Ω by firing a vertex i.

First pick a positive real number λ such that $\left\{x_{j}\right\}<1-\lambda$ for each nonzero vertex j. Let y be the point $y=x+\lambda \cdot(0,1, \ldots, 1)$. Observe that y belongs to the same region R and that φ maps y to the same acyclic orientation as the point x.

Since i is a source in Ω, the value $\left\{y_{i}\right\}$ is larger than any other value $\left\{y_{j}\right\}$ for vertexes j adjacent to the vertex i. Let z be the point with coordinates $z_{j}=y_{j}$ for $j \neq i$ and $z_{i}=\left\lceil y_{i}\right\rceil+\lambda / 2$. Observe that moving from y to the point z we do not cross any hyperplanes of the form $x_{i}=x_{j}+k$. Hence the point z also belongs to region R.

However, we did cross a hyperplane of the form $x_{i}=p$, corresponding to firing the vertex i. Hence we have that $\varphi(z)=\Omega^{\prime}$. Now we can iterate this argument to extend to the general case when $\Omega<\Omega^{\prime}$.

The case when Ω^{\prime} is covered by Ω is done similarly. However this case is easier since one can skip the middle step of defining the point y. Hence this case is omitted.

A connected component of a finite poset is a weakly connected component of its associated comparability graph. That is, a finite poset is the disjoint union of its connected components.

Lemma 7. Let Q be a connected component of the poset of acyclic orientations P_{0}. Then there exists a region R in C_{0} such that the map φ maps R onto the component Q.

Proof. Let Ω be an orientation in the component Q. Since φ is surjective we can lift Ω to a point x in C_{0}. Say that the point x lies in the region R. It is enough to show that every orientation Ω^{\prime} in Q can be lifted to a point in R. The two orientations Ω and Ω^{\prime} are related by a sequence in Q of orientations $\Omega=\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}=\Omega^{\prime}$ such that Ω_{i} and Ω_{i+1} are comparable. By iterating Lemma 6 we obtain points x_{i} in R such that $\varphi\left(x_{i}\right)=\Omega_{i}$. In particular, $\varphi\left(x_{k}\right)=\Omega^{\prime}$.

Proposition 8. Let Q be a connected component of the poset of acyclic orientations P_{0}. Then the component Q as a poset is a lattice. Moreover, let R be a region of C_{0} that maps onto Q by φ. Then the poset map $\left.\varphi\right|_{R}: R \longrightarrow Q$ is a lattice homomorphism.

Proof. The previous discussion showed that we can lift the component Q to a region R. Consider two acyclic orientations Ω and Ω^{\prime}. We can lift them to two points x and y in R, that is, $\varphi(x)=\Omega$ and $\varphi(y)=\Omega^{\prime}$. Since $\left.\varphi\right|_{R}$ is a poset map we obtain that $\varphi(x \wedge y)$ is a lower bound for Ω and Ω^{\prime}. It remains to show that the lower bound is unique.

Assume that $\Omega^{\prime \prime}$ is a lower bound of Ω and Ω^{\prime}. By Lemma 6 we can lift $\Omega^{\prime \prime}$ to an element z in R such that $z \leq x$. Similarly, we can lift $\Omega^{\prime \prime}$ to an element w in R such that $w \leq y$. That is we have that $\varphi(z)=\varphi(w)=\Omega^{\prime \prime}$. Now by Lemma 4 we have that $\varphi(z \wedge w)=\Omega^{\prime \prime}$. But since $z \wedge w$ is a lower bound of both x and y we have that $z \wedge w \leq x \wedge y$. Now applying φ we obtain that $\varphi(x \wedge y)$ is the greatest lower bound, proving that the meet is well-defined. A dual argument shows that the join is well-defined, hence Q is a lattice.

Finally, we have to show that $\left.\varphi\right|_{R}$ is a lattice homomorphism. Let x and y be two points in the region R. By Lemma 6 we can lift the inequality $\varphi(x) \wedge \varphi(y) \leq \varphi(x)$ to obtain a point z in R such that $z \leq x$ and $\varphi(z)=\varphi(x) \wedge \varphi(y)$. Similarly, we can lift the inequality $\varphi(x) \wedge \varphi(y) \leq \varphi(y)$ to obtain a point w in R such that $w \leq y$ and $\varphi(w)=\varphi(x) \wedge \varphi(y)$. By Lemma 4 we know that $\varphi(z \wedge w)=\varphi(x) \wedge \varphi(y)$. But $z \wedge w$ is a lower bound of both x and y, so $\varphi(x) \wedge \varphi(y)=\varphi(z \wedge w) \leq \varphi(x \wedge y)$. But since $\varphi(x \wedge y)$ is a lower bound of both $\varphi(x)$ and $\varphi(y)$ we have $\varphi(x \wedge y) \leq \varphi(x) \wedge \varphi(y)$. Thus the map $\left.\varphi\right|_{R}$ preserves the meet operation. The dual argument proves that $\left.\varphi\right|_{R}$ preserves the join operation, proving that it is a lattice homomorphism.

Combining these results we can now prove the result of Propp [7].
Theorem 9. Each connected component of the poset of acyclic orientations P_{0} is a distributive lattice.
Proof. It is enough to recall that \mathbb{R}^{n+1} is a distributive lattice and each region R is a sublattice. Furthermore, the image under a lattice morphism of a distributive lattice is also distributive.

Observe that the minimal element in each connected component Q is an acyclic orientation with the unique sink at the vertex 0 . Greene and Zaslavsky [4] proved that the number of such orientations is given by the sign -1 to the power one less than the number of vertices times the linear coefficient
in the chromatic polynomial of the graph G. Gebhard and Sagan gave several proofs of this result [3]. A geometric proof of this result can be found in [2], where the authors view the graphical hyperplane arrangement on a torus and count the regions on the torus.

That the connected components are confluent, that is, each pair of elements has a lower and an upper bound, can also be shown by analyzing chip-firing games [1]. Is there a geometric way to prove the confluency of chip-firing? More discussions relating these distributive lattice with chip-firing can be found in $[5,6]$.

Acknowledgments

The authors were partially supported by National Security Agency grant H98230-06-1-0072. The authors thank Andrew Klapper and Margaret Readdy for their comments on an earlier version of this paper.

References

[1] A. Björner, L. Lovász and P. Shor, Chip-firing games on graphs, European J. Combin. 12 (1991), 283-291.
[2] R. Ehrenborg, M. Readdy and M. Slone, Affine and toric hyperplane arrangements, Discrete Comput. Geom. 41 (2009), 481-512.
[3] D. Gebhard and B. Sagan, Sinks in acyclic orientations of graphs, J. Combin. Theory Ser. B 80 (2000), 130-146.
[4] C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc. 280 (1983), 97-126.
[5] M. Latapy and C. Magnien, Coding distributive lattices with edge firing games, Inform. Process. Lett. 83 (2002), 125-128.
[6] M. Latapy and H. D. Phan, The lattice structure of chip firing games and related models, Phys. D 155 (2001), 69-82.
[7] J. Propp, Lattice structure for orientations of graphs, preprint 1993.
R. Ehrenborg and M. Slone, Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, \{jrge,mslone\}@ms.uky.edu

[^0]: *To appear in Order.

