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Abstract

The set of acyclic orientations of a connected graph with a given sink has a natural poset
structure. We give a geometric proof of a result of Jim Propp: this poset is the disjoint union of
distributive lattices.

Let G be a connected graph on the vertex set [n] = {0} ∪ [n], where [n] denotes the set {1, . . . , n}.
Let P denote the collection of acyclic orientations of G, and let P0 denote the collection of acyclic
orientations of G with 0 as a sink. If Ω is an orientation in P with the vertex i as a source, we can
obtain a new orientation Ω′ with i as a sink by firing the vertex i, reorienting all the edges adjacent
to i towards i. The orientations Ω and Ω′ agree away from i.

A firing sequence from Ω to Ω′ in P consists of a sequence Ω = Ω1, . . . ,Ωm+1 = Ω′ of orientations
and a function F : [m] −→ [n] such that for each i ∈ [m], the orientation Ωi+1 is obtained from Ωi by
firing the vertex F (i). We will abuse language by calling F itself a firing sequence. We make P into a
preorder by writing Ω ≤ Ω′ if and only if there is a firing sequence from Ω to Ω′. From the definition
it is clear that P is reflexive and transitive. While P is only a preorder, P0 is a poset. By finiteness,
antisymmetry can be verified by showing that firing sequences in P0 cannot be arbitrarily long. This
is a consequence of the fact that neighbors of the distinguished sink 0 cannot fire. The proof depends
on the following lemma.

Lemma 1. Let F : [m] −→ [n] be a firing sequence for the graph G. If i and j are adjacent vertices
in G, then

|F−1(i)| ≤ |F−1(j)|+ 1.

Proof. A vertex can fire only if it is a source. Firing the vertex i reverses the orientation of its edge
to the vertex j. Hence the vertex i cannot fire again until the orientation is again reversed, which can
only happen by firing j.

As a corollary, firing sequences have bounded length, implying that P0 is a poset.

Corollary 2. The preorder P0 of acyclic orientations with a distinguished sink is a poset.

Proof. Let F : [m] −→ [n] be a firing sequence. By iterating the lemma, |F−1(i)| ≤ d(0, i)− 1, so

m =
∑
i∈[n]

|F−1(i)| ≤
∑
i∈[n]

(d(0, i)− 1).

Hence firing sequences cannot be arbitrarily long, implying that P0 is antisymmetric.
∗To appear in Order.
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For a real number a, let bac denote the largest integer less than or equal to a. Similarly, let dae
denote the least integer greater than or equal to a. Finally, let {a} denote the fractional part of the real
number a, that is, {a} = a− bac. (It will be clear from the context if {a} denotes the fractional part
or the singleton set.) Observe that the range of the function x 7−→ {x} is the half open interval [0, 1).

Let H̃ = H̃(G) be the periodic graphic arrangement of the graph G, that is, H̃ is the collection of
all hyperplanes of the form

xi = xj + k,

where ij is an edge in the graph G and k is an integer. This hyperplane arrangement cuts Rn+1 into
open regions. Note that each region is translation-invariant in the direction (1, . . . , 1). Let C denote
the complement of H̃, that is,

C = Rn+1 \
⋃

H∈ eH
H.

Define a map ϕ : C −→ P from the complement of the periodic graphic arrangement to the preorder of
acyclic orientations as follows. For a point x = (x0, . . . , xn) and an edge ij observe that {xi} 6= {xj}
since the point does not lie on any hyperplane of the form xi = xj + k. Hence orient the edge ij
towards i if {xi} < {xj} and towards j if the inequality is reversed. This defines the orientation ϕ(x).
Also note that this is an acyclic orientation, since no directed cycles can occur.

Let H0 be the coordinate hyperplane {x ∈ Rn+1 : x0 = 0}. The map ϕ sends points of the
intersection C0 = C ∩H0 to acyclic orientations in P0.

The real line R is a distributive lattice; meet is minimum and join is maximum. Since Rn+1 is a
product of copies of R, it is also a distributive lattice, with meet and join given by componentwise
minimum and maximum. That is, given two points in Rn, say x = (x0, . . . , xn) and y = (y0, . . . , yn),
their meet and join are given by

x ∧ y = (min(x0, y0), . . . ,min(xn, yn))

and
x ∨ y = (max(x0, y0), . . . ,max(xn, yn))

respectively.

Lemma 3. Each region R in the complement C of the periodic graphic arrangement H̃ is a distributive
sublattice of Rn+1. Hence the intersection R ∩ H0, which is a region in C0, is also a distributive
sublattice of Rn+1.

Proof. Since each region R is the intersection of slices of the form

T = {x ∈ R : xi + k < xj < xi + k + 1},

it is enough to prove that each slice is a sublattice of Rn+1. Let x and y be two points in the slice T .
Then min(xi, yi)+k = min(xi+k, yi+k) < min(xj , yj) < min(xi+k+1, yi+k+1) = min(xi, yi)+k+1,
implying that x ∧ y also lies in the slice T . A dual argument shows that the slice T is closed under
the join operation. Thus the region R is a sublattice. Since distributivity is preserved under taking
sublattices, it follows that R is a distributive sublattice of Rn+1.

In the remainder of this paper we let R be a region in C0.
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Lemma 4. Consider the restriction ϕ|R of the map ϕ to the region R. The inverse image of an
acyclic orientation in P0 is of the form:

R ∩

(
{0} ×

n∏
i=1

[ai, ai + 1)

)
,

where each ai is an integer. That is, the inverse image of an orientation is the intersection of the
region R with a half-open lattice cube. Hence the inverse image is a sublattice of Rn+1.

Proof. Assume that x and y lie in the region R. Define the integers ai and bi by ai = bxic and
bi = byic. Hence the coordinate xi lies in the half-open interval [ai, ai + 1) and the coordinate yi

lies in the half-open interval [bi, bi + 1). Lastly, assume that ϕ|R maps x and y to the same acyclic
orientation. The last condition implies that, for every edge ij, 0 ≤ xi − ai < xj − aj < 1 is equivalent
to 0 ≤ yi − bi < yj − bj < 1. Consider an edge that is directed from j to i. Since x and y both lie in
the region R, there exists an integer k such that xi + k < xj < xi + k + 1 and yi + k < yj < yi + k + 1.
Now we have that aj − ai < xj − xi < k + 1. Furthermore, observe that xj − aj − 1 < 0 ≤ xi − ai.
Hence aj−ai > xj−xi−1 > k−1. Since aj−ai is an integer, the two bounds implies that aj−ai = k.
By similar reasoning we obtain that bj − bi = k.

Hence for every edge ij we know that aj − ai = bj − bi. Since a0 = b0 = 0 and the graph G is
connected we obtain that ai = bi for all vertices i.

Lemma 5. The restriction ϕ|R : R −→ P0 is a poset homomorphism, that is, for two points y and z
in the region R such that y ≤ z the order relation ϕ(y) ≤ ϕ(z) holds.

Proof. Since the region R is convex, the line segment from y to z is contained in R. Let a point x
move continuously from y to z along this line segment and consider what happens with the associated
acyclic orientations ϕ(x). Note that each coordinate xi is non-decreasing. When the point x crosses
a hyperplane of the form xi = p where p is an integer, observe that the value {xi} approaches 1 and
then jumps down to 0. Hence the vertex i switches from being a source to being a sink, that is, the
vertex i fires.

Observe that two adjacent nodes i and j cannot fire at the same time, since the intersection of the
two hyperplanes xi = p and xj = q is contained in the hyperplane xi = xj + (p − q) which is not in
the region R.

Hence we obtain a firing sequence from the acyclic orientation ϕ(y) to ϕ(z), proving that ϕ(y) ≤
ϕ(z).

Lemma 6. Let x be a point in the region R. Let Ω′ be an acyclic orientation comparable to Ω = ϕ(x)
in the poset P0. Then there exists a point z in the region of R as x such that ϕ(z) = Ω′.

Proof. It is enough to prove this for cover relations in the poset P . We begin by considering the case
when Ω′ covers Ω in P . Thus Ω′ is obtained from Ω by firing a vertex i.

First pick a positive real number λ such that {xj} < 1− λ for each nonzero vertex j. Let y be the
point y = x + λ · (0, 1, . . . , 1). Observe that y belongs to the same region R and that ϕ maps y to the
same acyclic orientation as the point x.

Since i is a source in Ω, the value {yi} is larger than any other value {yj} for vertexes j adjacent
to the vertex i. Let z be the point with coordinates zj = yj for j 6= i and zi = dyie + λ/2. Observe
that moving from y to the point z we do not cross any hyperplanes of the form xi = xj + k. Hence
the point z also belongs to region R.
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However, we did cross a hyperplane of the form xi = p, corresponding to firing the vertex i. Hence
we have that ϕ(z) = Ω′. Now we can iterate this argument to extend to the general case when Ω < Ω′.

The case when Ω′ is covered by Ω is done similarly. However this case is easier since one can skip
the middle step of defining the point y. Hence this case is omitted.

A connected component of a finite poset is a weakly connected component of its associated com-
parability graph. That is, a finite poset is the disjoint union of its connected components.

Lemma 7. Let Q be a connected component of the poset of acyclic orientations P0. Then there exists
a region R in C0 such that the map ϕ maps R onto the component Q.

Proof. Let Ω be an orientation in the component Q. Since ϕ is surjective we can lift Ω to a point x
in C0. Say that the point x lies in the region R. It is enough to show that every orientation Ω′ in
Q can be lifted to a point in R. The two orientations Ω and Ω′ are related by a sequence in Q of
orientations Ω = Ω1,Ω2, . . . ,Ωk = Ω′ such that Ωi and Ωi+1 are comparable. By iterating Lemma 6
we obtain points xi in R such that ϕ(xi) = Ωi. In particular, ϕ(xk) = Ω′.

Proposition 8. Let Q be a connected component of the poset of acyclic orientations P0. Then the
component Q as a poset is a lattice. Moreover, let R be a region of C0 that maps onto Q by ϕ. Then
the poset map ϕ|R : R −→ Q is a lattice homomorphism.

Proof. The previous discussion showed that we can lift the component Q to a region R. Consider two
acyclic orientations Ω and Ω′. We can lift them to two points x and y in R, that is, ϕ(x) = Ω and
ϕ(y) = Ω′. Since ϕ|R is a poset map we obtain that ϕ(x∧y) is a lower bound for Ω and Ω′. It remains
to show that the lower bound is unique.

Assume that Ω′′ is a lower bound of Ω and Ω′. By Lemma 6 we can lift Ω′′ to an element z in R
such that z ≤ x. Similarly, we can lift Ω′′ to an element w in R such that w ≤ y. That is we have
that ϕ(z) = ϕ(w) = Ω′′. Now by Lemma 4 we have that ϕ(z ∧ w) = Ω′′. But since z ∧ w is a lower
bound of both x and y we have that z ∧ w ≤ x ∧ y. Now applying ϕ we obtain that ϕ(x ∧ y) is the
greatest lower bound, proving that the meet is well-defined. A dual argument shows that the join is
well-defined, hence Q is a lattice.

Finally, we have to show that ϕ|R is a lattice homomorphism. Let x and y be two points in the
region R. By Lemma 6 we can lift the inequality ϕ(x)∧ϕ(y) ≤ ϕ(x) to obtain a point z in R such that
z ≤ x and ϕ(z) = ϕ(x)∧ϕ(y). Similarly, we can lift the inequality ϕ(x)∧ϕ(y) ≤ ϕ(y) to obtain a point
w in R such that w ≤ y and ϕ(w) = ϕ(x)∧ϕ(y). By Lemma 4 we know that ϕ(z ∧w) = ϕ(x)∧ϕ(y).
But z ∧w is a lower bound of both x and y, so ϕ(x)∧ϕ(y) = ϕ(z ∧w) ≤ ϕ(x∧ y). But since ϕ(x∧ y)
is a lower bound of both ϕ(x) and ϕ(y) we have ϕ(x∧ y) ≤ ϕ(x)∧ϕ(y). Thus the map ϕ|R preserves
the meet operation. The dual argument proves that ϕ|R preserves the join operation, proving that it
is a lattice homomorphism.

Combining these results we can now prove the result of Propp [7].

Theorem 9. Each connected component of the poset of acyclic orientations P0 is a distributive lattice.

Proof. It is enough to recall that Rn+1 is a distributive lattice and each region R is a sublattice.
Furthermore, the image under a lattice morphism of a distributive lattice is also distributive.

Observe that the minimal element in each connected component Q is an acyclic orientation with
the unique sink at the vertex 0. Greene and Zaslavsky [4] proved that the number of such orientations
is given by the sign −1 to the power one less than the number of vertices times the linear coefficient
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in the chromatic polynomial of the graph G. Gebhard and Sagan gave several proofs of this result [3].
A geometric proof of this result can be found in [2], where the authors view the graphical hyperplane
arrangement on a torus and count the regions on the torus.

That the connected components are confluent, that is, each pair of elements has a lower and an
upper bound, can also be shown by analyzing chip-firing games [1]. Is there a geometric way to prove
the confluency of chip-firing? More discussions relating these distributive lattice with chip-firing can
be found in [5, 6].
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