
Coproducts and the cd-index∗

Richard EHRENBORG and Margaret READDY

Dedicated to Gian-Carlo Rota on his 26th birthday.

Abstract

The linear span of isomorphism classes of posets, P, has a Newtonian coalgebra structure. We
observe that the ab-index is a Newtonian coalgebra map from the vector space P to the algebra of
polynomials in the non-commutative variables a and b. This enables us to obtain explicit formulas
showing how the cd-index of the face lattice of a convex polytope changes when taking the pyramid
and the prism of the polytope and the corresponding operations on posets. As a corollary, we have
new recursion formulas for the cd-index of the Boolean algebra and the cubical lattice. Moreover,
these operations also have interpretations for certain classes of permutations, including simsun and
signed simsun permutations. We prove an identity for the shelling components of the simplex.
Lastly, we show how to compute the ab-index of the Cartesian product of two posets given the
ab-indexes of each poset.

1 Introduction

The cd-index is an efficient way to encode the flag f -vector (equivalently the flag h-vector) of an
Eulerian poset. It gives an explicit basis for the generalized Dehn-Sommerville equations, also known
as the Bayer-Billera relations [1]. An important example of an Eulerian poset is the face lattice of a
convex polytope.

In this paper we study how the cd-index of the face lattice of a convex polytope changes after
applying each of the following geometric operations to the convex polytope itself: taking the pyramid,
taking the prism, truncating at a vertex, and pasting two polytopes together at a common facet. All
four of these operations act on the face lattice of the polytope. The change in the cd-index from
the pasting operation follows from a result of Stanley [20, Lemma 2.1]. Similarly the change from
truncating at a vertex follows from the same result of Stanley and the pyramid and prism operations.

To understand how the cd-index changes under the prism and pyramid operations, we consider P,
the linear span of isomorphism classes of graded posets. This vector space is an algebra under the star
product ∗ of posets, first described by Stanley [20]. More importantly, P has a coalgebra structure.
The pair formed by the star product ∗ and the coproduct ∆ do not form a bialgebra, but instead a
∗This paper appeared in Journal of Algebraic Combinatorics 8 (1998), 273–299.
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Newtonian coalgebra, a concept introduced by Joni and Rota [13]. The main observation we make is
that the cd-index is a Newtonian coalgebra map from the vector space E spanned by all isomorphism
classes of Eulerian posets to the algebra F of polynomials in the non-commutative variables c and d.
We thus obtain that the prism operation corresponds to a certain derivation D on cd-polynomials, and
the pyramid operation corresponds to a second derivation G. Hence given the cd-index of a polytope,
we may easily compute the cd-index of the prism and the pyramid of the polytope with the help of
these two derivations. Using these two derivations, we obtain new explicit recursion formulas for the
cd-index of the Boolean algebra Bn and the cubical lattice Cn.

There is a relation between the cd-index of the Boolean algebra Bn and certain classes of permuta-
tions. For instance, the cd-index of Bn is a refined enumeration of André permutations [17]. Similarly,
it is also a refined enumeration of simsun permutations, first defined by Simion and Sundaram [22, 23].
Another known example of a poset–permutations pair is the cubical lattice and signed André permuta-
tions [8, 17]. This motivates us to ask the following question. Given an Eulerian poset P , is it possible
to find a canonical class of permutations which correspond to the cd-index of the poset P? We show
that given a poset–permutations pair (P, T ), we can construct a class of permutations corresponding
to the pyramid of P . A similar signed result holds for the prism of P . The simsun permutations
may be built up by repeated use of this correspondence. Also, we define signed simsun permutations,
which correspond to the cubical lattice Cn.

In [20] Stanley studies the shelling components of a simplex and their cd-indexes, given by a sum
of Φ̌n

i ’s. Using our techniques, we obtain a recursion formula for Φ̌n
i . As a corollary to this recursion

we prove a version of Stanley’s conjecture [20, Conjecture 3.1] concerning the correspondence between
simsun permutations and the Φ̌n

i ’s.

In Section 9 we consider the problem of computing the ab-index of the Cartesian product of two
posets knowing the ab-indexes of each poset. This problem is solved by introducing mixing operators.
The theorem of this section is motivated by the case where each poset has an R-labeling. As a corollary
we obtain that for two convex polytopes U and V we can compute the ab-index of their Cartesian
product in terms of their ab-indexes.

We thank Louis Billera and Gábor Hetyei for their helpful discussions, as well as the referee for
his valuable suggestions.

2 Newtonian coalgebras

Let k be a field of characteristic 0. Let V be a vector space over the field k. A product on the vector
space V is a linear map µ : V ⊗ V −→ V . The product µ is associative if µ ◦ (µ ⊗ 1) = µ ◦ (1 ⊗ µ).
Similarly, a coproduct on the vector space V is a linear map ∆ : V −→ V ⊗ V . The coproduct ∆ is
coassociative if (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆.

Definition 2.1 Let V be a vector space with an associative product µ and a coassociative coproduct
∆. We call the triplet (V, µ,∆) a Newtonian coalgebra if it satisfies the identity

∆ ◦ µ = (1⊗ µ) ◦ (∆⊗ 1) + (µ⊗ 1) ◦ (1⊗∆).
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The Sweedler notation of a coproduct ∆ is to write ∆(x) =
∑
x x(1) ⊗ x(2); see [24, pages 10-11].

Then the Newtonian condition may be written

∆(x · y) =
∑
x

x(1) ⊗ (x(2) · y) +
∑
y

(x · y(1))⊗ y(2).

Observe that this identity is a generalization of the product rule for a derivative. In fact, for any
element v ∈ V , the linear map x 7−→ Dv(x) =

∑
x x(1) · v · x(2) is a derivative on the algebra (V, µ).

That is, Dv(x · y) = Dv(x) · y + x ·Dv(y), or Dv ◦ µ = µ ◦ (Dv ⊗ 1 + 1⊗Dv).

The definition of Newtonian coalgebra originated from Joni and Rota [13] under the name in-
finitesimal coalgebra. Our definition is from [7]. The first in–depth study of a Newtonian coalgebra
was by Hirschhorn and Raphael [12], who studied the coalgebra on k[x] where the coproduct is given
by ∆(xn) =

∑
i+j=n−1 x

i⊗xj . In this section we will introduce two important examples of Newtonian
coalgebras, which we denote by A and P. These two examples appear in [7].

Let A = k〈a,b〉 be the polynomial algebra in the non-commutative variables a and b. Let the
product on A be the ordinary multiplication. Define the coproduct ∆ on a monomial v1 · v2 · · · vn by

∆(v1 · v2 · · · vn) =
n∑
i=1

v1 · · · vi−1 ⊗ vi+1 · · · vn.

It is easy to see that this is a Newtonian coalgebra. The Newtonian coalgebra A is naturally graded,
that is, we may write A =

⊕
n≥0An, where An is spanned by monomials of degree n. Then dim(An) =

2n and we have Ai · Aj ⊆ Ai+j and ∆(An) ⊆
⊕

i+j=n−1Ai ⊗Aj .

Lemma 2.2 Consider the coproduct ∆ as a linear map ∆ : An −→
⊕

i+j=n−1Ai ⊗ Aj. The kernel
of ∆ is one-dimensional and is spanned by the element (a− b)n.

Proof: Let x be an element in An such that ∆(x) = 0. Assume that x =
∑
w αw ·w, where w ranges

over all monomials in An.

Let u ∈ Ai and v ∈ Aj , where i+ j = n− 1. The only way to obtain the term u⊗ v in a coproduct
is by applying the coproduct to either u · a · v or u · b · v. Hence consider the coefficient of u ⊗ v in
∆(x) = 0. Then we obtain the identity αu·a·v + αu·b·v = 0. Since this identity holds for all u and v,
we get

αw = (−1)number of b’s in w · αan ,

which completes the proof. 2

The linear map ∆ : An −→
⊕

i+j=n−1Ai ⊗Aj is not surjective for n ≥ 2, because dim (∆(An)) =

2n − 1 and dim
(⊕

i+j=n−1Ai ⊗Aj
)

= n · 2n−1 > 2n − 1.

We will now consider graded posets P whose minimal element differs from its maximal element.
Hence the rank of such a poset is at least 1. (See [19] for terminology on posets.) If two posets are
isomorphic we say that they have the same type. We denote the type of a poset P by P . Let P be
the vector space over the field k spanned by all types of posets.
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We define a coproduct on the vector space P by

∆(P ) =
∑
x∈P

0̂<x<1̂

[0̂, x]⊗ [x, 1̂],

and extend this definition by linearity. Observe that this coproduct differs from the ordinary coproduct
that is defined on the reduced incidence Hopf algebra of posets; see [5, 13, 18].

Let P and Q be two graded posets. We define their star product, R = P ∗Q, by letting R be the
set (P − {1̂}) ∪ (Q− {0̂}) and defining the order relation on R by x ≤R y if (i) x, y ∈ P and x ≤P y,
(ii) x, y ∈ Q and x ≤Q y, or (iii) x ∈ P and y ∈ Q. This product was first mentioned in [20]. Observe
that the rank of the poset P ∗Q is given by ρ(P ) + ρ(Q) − 1. The product ∗ extends naturally to a
product on P.

Proposition 2.3 (Ehrenborg and Hetyei) The triplet (P, ∗,∆) is a Newtonian coalgebra.

This Newtonian algebra has a natural grading, P =
⊕

n≥0 Pn, where Pn is the linear span of types of
graded posets of rank n+ 1. Then we have Pi ∗ Pj ⊆ Pi+j and ∆(Pn) ⊆

⊕
i+j=n−1 Pi ⊗ Pj .

There are two other products on posets that we consider. First, there is the Cartesian product of
posets, which we denote by P × Q, defined as {(x, y) : x ∈ P and y ∈ Q}, with the order relation
given by (x, y) ≤P×Q (z, w) if and only if x ≤P z and y ≤Q w. Secondly, define the diamond product
by P �Q = (P −{0̂})×(Q−{0̂})∪{0̂}. The diamond product corresponds to the Cartesian product of
convex polytopes, that is, L(V ×W ) = L(V ) � L(W ), where V and W are two convex polytopes and
L(V ) denotes the face lattice of V . Both of these products on posets extend naturally to the linear
space P, and we have that Pi × Pj ⊆ Pi+j+1 and Pi � Pj ⊆ Pi+j .

3 The cd-index of Eulerian posets

To each graded poset P we will assign a non-commutative polynomial in the variables a and b called
the ab-index. Let P be a graded poset of rank n+ 1. To every chain c = {0̂ < x1 < · · · < xk < 1̂} of
the poset P we associate a weight wP (c) = w(c) = z1 · · · zn, where

zi =

{
b if i ∈ {ρ(x1), . . . , ρ(xk)},

a− b otherwise.

Observe that the chain {0̂ < 1̂} receives the weight (a−b)n and a maximal chain has weight bn. Note
also that the degree of the weight w(c) is n. Define the ab-index of the poset P to be the sum

Ψ(P ) =
∑
c

w(c),

where c ranges over all chains c = {0̂ < x1 < · · · < xk < 1̂} in the poset P .

By linearity we may extend the map Ψ to a linear map Ψ : P −→ A.
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Figure 1: A non-Eulerian poset P with Ψ(P ) ∈ F .

Proposition 3.1 The linear map Ψ : P −→ A is a Newtonian coalgebra map. That is, Ψ ◦ µ =
µ ◦ (Ψ⊗Ψ) and ∆ ◦Ψ = (Ψ⊗Ψ) ◦∆.

Proof: The first identity is equivalent to Ψ(P ∗Q) = Ψ(P ) · Ψ(Q), for two posets P and Q. This is
due to Stanley; see [20, Lemma 1.1]. In terms of posets, the second identity says that

∆(Ψ(P )) =
∑
x∈P

0̂<x<1̂

Ψ([0̂, x])⊗Ψ([x, 1̂]). (3.1)

Observe that the coproduct of the weight of a chain c = {0̂ < x1 < · · · < xk < 1̂} is given by

∆(w(c)) =
k∑
i=1

w[0̂,xi]
({0̂ < x1 < · · · < xi})⊗ w[xi,1̂]({xi < xi+1 < · · · < xk < 1̂}).

Equation (3.1) follows now by summing over all chains c and regrouping the terms. 2

Recall that a poset P is Eulerian if the Möbius function µ on any interval [x, y] in P is given by
µ(x, y) = (−1)ρ(x,y). Let E be the subspace of P spanned by all types of Eulerian posets. It is easy to
see that E is closed under the product ∗ and the coproduct ∆. Hence E forms a Newtonian subalgebra
of P. The subspace E is also closed under the Cartesian product and the diamond product.

Fine observed that the ab-index of an Eulerian poset may be written uniquely as a polynomial in
the non-commutative variables c = a+b and d = ab+ba; see [2]. When the ab-index can be written
as a polynomial in c and d, we call this polynomial the cd-index. See Stanley [20] for an elementary
proof of this fact.

For a poset of P of rank n + 1, the coefficient of an in the ab-index Ψ(P ) is always equal to 1.
Hence the coefficient of cn in the cd-index of Eulerian poset is always equal to 1.

Let F be the subalgebra of A spanned by the elements c and d. F is closed under the coproduct ∆,
since ∆(c) = ∆(a+b) = 1⊗1+1⊗1 = 2 ·1⊗1 and ∆(d) = ∆(ab+ba) = a⊗1+1⊗b+b⊗1+1⊗a =
c⊗ 1 + 1⊗ c. The Newtonian coalgebra F inherits the grading from A. That is, F =

⊕
n≥0Fn, where

Fn ⊆ An. Since dim(F0) = dim(F1) = 1 and Fn = c · Fn−1 + d · Fn−2 one has dim(Fn) = fn+1,
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where fn is the nth Fibonacci number. (Recall fn is defined recursively by f0 = 0, f1 = 1, and
fn = fn−1 + fn−2.)

The important observation to make here is that the linear map Ψ : P −→ A restricts to a linear
map from the Newtonian coalgebra E to the Newtonian coalgebra F . Note that there exist posets
which are not Eulerian, but whose ab-index may be expressed in terms of c and d. For example, the
poset P in Figure 1 is not Eulerian, but Ψ(P ) = c2 + d ∈ F .

The dual poset of a poset P is the poset P ∗ where the order relation is defined by x ≤P ∗ y if
and only if y ≤P x. This is an involution of posets which extends to an involution ω on the linear
space P. The map ω is also an involution on E . Define an involution on A, also denoted ω, by
ω(v1 · v2 · · · vn) = vn · · · v2 · v1, and extend it linearly to all of A. This is also an involution on F .
It is easy see that ω commutes with the linear map Ψ, that is, ω ◦ Ψ = Ψ ◦ ω. Moreover, in our
four Newtonian coalgebras A, F , P, and E , we have the two relations ω ◦ µ = µ ◦ σ ◦ (ω ⊗ ω) and
∆ ◦ ω = (ω ⊗ ω) ◦ σ ◦∆, where σ(x⊗ y) = y ⊗ x.

Let V be a convex polytope. Then the face lattice of V , L(V ), is an Eulerian poset. Hence we
may compute the cd-index of L(V ), that is, Ψ(L(V )). For the remainder of this paper we will write
Ψ(V ) instead of the more cumbersome Ψ(L(V )). For a polytope V , the polar (or dual) polytope is
denoted by V ∆; see [26]. We have L(V ∆) = L(V )∗. Hence directly we obtain Ψ(L(V ∆)) = Ψ(L(V ))∗,
or in our shorthand, Ψ(V ∆) = Ψ(V )∗.

As two examples of cd-indexes of polytopes, the cd-index of a polygon V is given by

Ψ(V ) = c2 + (f0 − 2) · d, (3.2)

and the cd-index of a three-dimensional polytope V is given by

Ψ(V ) = c3 + (f0 − 2) · dc + (f2 − 2) · cd, (3.3)

where f0 denotes the number of vertices and f2 the number of two-dimensional faces of the polytope.

Recall that (a − b)2 = (c2 − 2 · d). Hence when n is even, the element (a − b)n belongs to Fn.
Given an element x in Fn, expand it in terms of a and b. The coefficient of an and bn in x both equal
the coefficient of cn in x. When n is odd, the coefficients of an and bn in (a − b)n differ, and hence
(a− b)n does not belong to Fn. Thus we have the following result.

Corollary 3.2 Consider the linear map ∆ : Fn −→
⊕

i+j=n−1Fi ⊗ Fj. When n is odd, the linear
map ∆ is injective. When n is even, the kernel of the linear map ∆ is one-dimensional and is spanned
by the element (c2 − 2 · d)

n
2 .

Given an Eulerian poset P , how do we compute its cd-index? If we instead consider the larger
problem of determining the cd-index of all of the intervals of the poset P , the coproduct suggests an
algorithm for this computation.

Assume that we know ∆(Ψ(P )) for an Eulerian poset P . Recall the coefficient of cρ(P )−1 in Ψ(P )
is equal to 1. Let F ′n be the linear span of all cd-monomials of degree n which contain at least one d,
that is, we have excluded the monomial cn. So dim(F ′n) = dim(Fn)− 1. By Corollary 3.2, the kernel
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1. set w ← 0
2. for r = 0 to bn/2c − 1 do
3. for s = 0 to n− 2r − 1 do
4. set v ← [cs⊗] δr(p)
5. if v is not divisible on the left by c
6. then terminate since p is not in ∆(F ′n)
7. else u← c−1 · v
8. set w ← w + csd · u
9. set p← p−∆(csd · u)

10. if δr(p) 6= 0
11. then terminate since p is not in ∆(F ′n)
12. return(w)

Figure 2: An algorithm for computing ∆−1(p), where p belongs to ∆(F ′n).

of ∆ does not belong to the linear space F ′n, hence the restricted map ∆ : F ′n −→ ⊕i+j=n−1Fi⊗Fj is
injective.

In order to present a method to compute the inverse of ∆, we need to introduce some terminology
and notation. We say that a cd-polynomial v is divisible on the left by c if there exists a cd-polynomial
u such that v = c · u. If u exists, we will write u = c−1 · v. For z in Fn, define δr(z) to be all of the
terms of z that contain exactly r number of d’s. An example is δ1(c3 + 6 ·dc + 4 · cd) = 6 ·dc + 4 · cd.
Similarly, for p in ⊕i+j=n−1Fi ⊗ Fj define δr(p) to be all of the terms of p that contain exactly r
number of d’s. In both cases the linear map δr is a projection. Finally, we write [cs⊗] p for the sum of
all monomials v such that the term cs⊗v occurs in p. For example, for p = 2 ·cd⊗c+3 ·c2⊗d−d⊗d
we have δ1(p) = 2 · cd⊗ c + 3 · c2 ⊗ d and [c2⊗] p = 3 · d.

Proposition 3.3 The algorithm in Figure 2 computes the inverse of the linear map ∆ : F ′n −→
⊕i+j=n−1Fi ⊗Fj. That is, given p in ∆(F ′n), the algorithm computes ∆−1(p).

The proof of this proposition is an induction argument on the pair (r, s). The induction step from
(r, s) to (r, s+ 1) is given by the lemma:

Lemma 3.4 At step (r, s) in the algorithm in Figure 2, let z ∈ F ′n be the element such that ∆(z) = p.
Assume that the element z satisfies:

(i) δi(z) = 0 for all 0 ≤ i < r,

(ii) [cjd · y] z = 0 for all 0 ≤ j < s and for all cd-monomials y such that degd(y) = r − 1.

Then the element z − csd · u satisfies [csd · y] (z − csd · u) = 0 for all cd-monomials y such that
degd(y) = r − 1.
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1. for all intervals [x, y] of length 1
2. set Ψ([x, y])← 1
3. for all intervals [x, y] of length 2
4. set Ψ([x, y])← c
5. for k = 3 to ρ(P ) do
6. for all intervals [x, y] of length k

7. set Ψ([x, y])← ∆−1
(∑

x<z<y Ψ([x, z])⊗Ψ([z, y])
)

Figure 3: An algorithm for computing the cd-index of all intervals of an Eulerian poset P .

First observe that when the term x ⊗ y occurs in ∆(z), where x and y are monomials, then one
of the following three cases holds: the term x · c · y occurs in z, the term x′ · d · y occurs in z with
x = x′ · c, or the term x · d · y′ occurs in z with y = c · y′.

Consider the term cs ⊗ v in p. This term has exactly r d’s and it is in the image of a monomial
with either r or r+1 d’s. The case with r d’s is not possible by our first assumption on z. If v contains
a monomial that begins with a d, say d · x, then the term cs ⊗ d · x can only occur in ∆(cs−1ddx),
contradicting our second assumption on z. Hence we conclude that v is divisible on the left by c. The
term cs ⊗ v = cs ⊗ c · u does occur in ∆(csd · u). Now consider the expression p−∆(csd · u), which
is equal to ∆(z − csd · u). No monomial in z − csd · u is of the form csd · y. This completes the proof
of the lemma.

The suggested algorithm to compute the cd-index of a poset P and all of its intervals is presented
in Figure 3.

4 The pyramid and the prism of a polytope

There are two well-known operations defined on convex polytopes: the pyramid and the prism. From
a convex polytope V , we may construct the pyramid of V , Pyr(V ), and the prism of V , Prism(V ).
Let Bn be the Boolean algebra of rank n, that is, the face lattice of the simplex of dimension n − 1.
Also let Cn be the cubical lattice of rank n+ 1, that is, the face lattice of an n-dimensional cube.

Proposition 4.1 Let V be a convex polytope. Then the face lattice of the pyramid of V and the face
lattice of the prism of V are given by

L(Pyr(V )) = L(V )×B1 and L(Prism(V )) = L(V ) �B2.

These two identities follow from observations of Kalai [14, section 2].

We define the two operations pyramid and prism on a poset P by Pyr(P ) = P×B1 and Prism(P ) =
P �B2. Two natural questions occur now. Given the cd-index Ψ(V ), are we able to compute Ψ(Pyr(V ))
and Ψ(Prism(V )).
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Proposition 4.2 Let P be a graded poset. Then

Ψ(Pyr(P )) =
1
2

Ψ(P ) · c + c ·Ψ(P ) +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · d ·Ψ([x, 1̂])

,
Ψ(Prism(P )) = Ψ(P ) · c +

∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · d ·Ψ([x, 1̂]).

Proof: The proof of the second identity will follow as a special case of Proposition 4.3. The first
identity follows by a careful chain argument. Consider a chain c in P × B1. We have c = {(0̂, 0̂) =
(x0, y0) < (x1, y1) < · · · < (xk, yk) = (1̂, 1̂)}. Let i be the smallest index such that yi = 1̂. Let x = xi.
Hence we have y0 = · · · = yi−1 = 0̂ and yi = · · · = yk = 1̂. Moreover we have xi−1 ≤ xi, and the two
chains c1 = {0̂ = x0 < x1 < · · · < xi−1 ≤ x} in [0̂, x] and c2 = {x < xi+1 < · · · < xk = 1̂} in [x, 1̂].

Three cases occur:

1. 0̂ < x < 1̂. Then the element (x, 0̂) may or may not be in the chain c. Let c′ denote the chain
c − {(x, 0̂)}, that is, the chain without the element (x, 0̂). Similarly, let c′′ denote the chain
c ∪ {(x, 0̂)}, that is, the chain with the element (x, 0̂). Observe that the element (x, 1̂) belongs
to both the chains c′ and c′′, so the weight of these chains at rank ρ(x) + 1 is b. Hence we have

w(c′) = w[0̂,x](c1) · (a− b) · b · w[x,1̂](c2),

w(c′′) = w[0̂,x](c1) · b · b · w[x,1̂](c2),

w(c′) + w(c′′) = w[0̂,x](c1) · a · b · w[x,1̂](c2).

2. x = 1̂. Then the element (1̂, 0̂) may or may not be in the chain c. Let c′ be the chain c−{(1̂, 0̂)}
and let c′′ be the chain c ∪ {(1̂, 0̂)}. Then

w(c′) = wP (c1) · (a− b),
w(c′′) = wP (c1) · b,

w(c′) + w(c′′) = wP (c1) · a.

3. x = 0̂. Then the element (0̂, 1̂) lies in the chain c, and the weight of the chain c is

w(c) = b · wP (c2).

Summing over all chains c in P ×B1, we obtain

Ψ(P ×B1) = b ·Ψ(P ) + Ψ(P ) · a +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · a · b ·Ψ([x, 1̂]). (4.1)

Applying equation (4.1) to the poset P ∗ gives

Ψ(P ∗ ×B1) = b ·Ψ(P ∗) + Ψ(P ∗) · a +
∑
x∈P

0̂<x<1̂

Ψ([x, 1̂]∗) · a · b ·Ψ([0̂, x]∗).
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Now applying the involution ω, we obtain

Ψ(P ×B1) = Ψ(P ) · b + a ·Ψ(P ) +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · b · a ·Ψ([x, 1̂]). (4.2)

Adding equations (4.1) and (4.2) gives the desired result. 2

Since Cn+1 = Prism(Cn), Proposition 4.2 gives a recursion formula for the cd-index of the cubical
lattice Cn. This recursion was first developed by Purtill [17]. The second part of Proposition 4.2 may
be generalized in the following manner. Let Ar be a graded poset of rank 2 which has r atoms (which
are also coatoms). Note that A2 = B2. Let cr = a + (r − 1) · b and dr = ab + (r − 1) · ba.

Proposition 4.3 Let P be a graded poset. Then

Ψ(P �Ar) = Ψ(P ) · cr +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · dr ·Ψ([x, 1̂]).

Proof: Denote the r atoms in Ar by 1, . . . , r. Consider a chain c in P � Ar. We have c = {0̂ <
(x1, y1) < · · · < (xk, yk) = (1̂, 1̂)}. Let i be the smallest index such that yi = 1̂. Two cases occur, each
having two subcases.

1. Assume that yi−1 exists (that is, i > 1) such that 1 ≤ yi−1 ≤ r − 1. Let x = xi−1 > 0̂. The
element (x, 1̂) may or may not be in the chain. Let c′ be the chain c−{(x, 1̂)} and let c′′ be the
chain c ∪ {(x, 1̂)}. Moreover, let c1 be the chain {0̂ < x1 < · · · < xi−2 < x} and c2 the chain
{x < xi+1 < · · · < xk−1 < 1̂}. The first subcase is when x < 1̂. Then the sum of the weights of
the chains c′ and c′′ is given by

w(c′) + w(c′′) = w[0̂,x](c1) · b · a · w[x,1̂](c2).

The second subcase is x = 1̂. Then the weight of the chain is

w(c) = wP (c1) · b.

Observe in both subcases that there are r − 1 choices for yi−1.

2. Assume that either i = 1 (so yi−1 does not exist) or yi−1 = r. Let x = xi > 0̂. Let c′

be the chain c − {(x, r)} and let c′′ be the chain c ∪ {(x, r)}. Moreover, let c1 be the chain
{0̂ < x1 < · · · < xi−1 < x} and c2 the chain {x < xi+1 < · · · < xk−1 < 1̂}. In the first subcase
when x < 1̂, we obtain that the sum of the weights of the chains c′ and c′′ is given by

w(c′) + w(c′′) = w[0̂,x](c1) · a · b · w[x,1̂](c2).

For the second subcase when x = 1̂, we similarly get that the sum of the weights of the chains
c′ and c′′ is

w(c′) + w(c′′) = wP (c1) · a.
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Now summing over all chains c in P �Ar, we obtain

Ψ(P �Ar) = Ψ(P ) · (a + (r − 1) · b) +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · (ab + (r − 1) · ba) ·Ψ([x, 1̂]). 2

Define a linear operator D : A −→ A by

D(w) =
∑
w

w(1) · d · w(2).

Recall that D is a derivation. We could have defined D directly as a derivation on A such that
D(a) = D(b) = ab + ba = d. Note that D is also a derivation on F since D(c) = 2 · d and
D(d) = cd + dc.

Combining Proposition 4.2 with the fact that Ψ is a Newtonian coalgebra map, we obtain:

Theorem 4.4 Let P be a graded poset. Then

Ψ(Pyr(P )) =
1
2

[Ψ(P ) · c + c ·Ψ(P ) +D(Ψ(P ))],

Ψ(Prism(P )) = Ψ(P ) · c +D(Ψ(P )).

Similarly, let V be a convex polytope. Then

Ψ(Pyr(V )) =
1
2

[Ψ(V ) · c + c ·Ψ(V ) +D(Ψ(V ))],

Ψ(Prism(V )) = Ψ(V ) · c +D(Ψ(V )).

In Theorem 5.2 we will improve the formula for the pyramid.

Theorem 4.4 gives a new recursion formula for the cd-index of the cubical lattice Cn. Directly we
have

Ψ(Cn+1) = Ψ(Cn) · c +D(Ψ(Cn)).

This is a different recursion formula than Purtill obtained in [17].

Similar to Theorem 4.4, define a derivation Dr on A by Dr(a) = Dr(b) = dr. Then by Proposi-
tion 4.3 we obtain that

Corollary 4.5 Let P be a graded poset. Then

Ψ(P �Ar) = Ψ(P ) · cr +Dr(Ψ(P )).

11



Proposition 4.3 and Corollary 4.5 generalize the recursion for the r-cd-index given in [8].

Example 4.6 Let the convex polytope V be a 3-cube with a vertex cut off. The polytope V has
10 vertices and 7 facets. By equation (3.3), the cd-index of V is Ψ(V ) = c3 +(10−2)dc+(7−2)cd =
c3 + 8dc + 5cd. We have

∆(c3 + 8dc + 5cd) = 7 · c2 ⊗ 1 + 15 · c⊗ c + 10 · 1⊗ c2 + 16 · d⊗ 1 + 10 · 1⊗ d.

D(c3 + 8dc + 5cd) = 7 · c2d + 15 · cdc + 10 · dc2 + 26 · d2.

Hence the cd-index of the prism of V is equal to

Ψ(Prism(V )) = c4 + 7 · c2d + 20 · cdc + 18 · dc2 + 26 · d2.

There is another operation on polytopes, namely the bipyramid, Bipyr(V ). It is well-known that
Bipyr(V ) = Prism(V ∆)∆. Since the involution w 7−→ w∗ commutes with the derivation D, that is,
D(w∗) = D(w)∗, we obtain:

Corollary 4.7 For a polytope V

Ψ(Bipyr(V )) = c ·Ψ(V ) +D(Ψ(V )).

5 The derivation G

On the algebra A define two derivations G and G′ by letting

G(a) = ba, G′(a) = ab,
G(b) = ab, G′(b) = ba,

and extending G and G′ to all ab-polynomials by linearity and the product rule of derivations. Since
D(a) = G(a) + G′(a) and D(b) = G(b) + G′(b), we obtain that D(w) = G(w) + G′(w) for all
ab-polynomials w. That is, D = G+G′.

Observe that G(c) = G(a+b) = ba+ab = d and G(d) = G(a) ·b+a ·G(b)+G(b) ·a+b ·G(a) =
bab + aab + aba + bba = cd. A similar computation gives G′(c) = d and G′(d) = dc. Hence G and
G′ restrict to be derivations on F .

Lemma 5.1 For all ab-monomials w, the identity w · c +G(w) = c · w +G′(w) holds.

Proof: The proof is by induction on the length of w. The base case is the three cases w = 1, w = a,
and w = b. When w = 1, both sides are equal to c. When w = a, we have that a · c + G(a) =
a · (a + b) + ba = (a + b) · a + ab = c · a +G′(a). A similar computation holds when w = b.
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For the induction step, consider w where w has length at least 2. We can write w = u · v, where
u 6= w and v 6= w. By the induction hypothesis, we obtain

u · c +G(u) = c · u+G′(u) and v · c +G(v) = c · v +G′(v).

Multiplying the first equality on the right with v, the second equality on the left with u and then
adding the two equations gives

u · c · v +G(u) · v + u · v · c + u ·G(v) = c · u · v +G′(u) · v + u · c · v + u ·G′(v).

By cancelling the term u · c · v and rewriting the equation using the product rule, we obtain

u · v · c +G(u · v) = c · u · v +G′(u · v),

which is the desired equality. 2

Theorem 5.2 Let P be a graded poset. Then

Ψ(Pyr(P )) = Ψ(P ) · c +G(Ψ(P )).

Similarly, let V be a convex polytope. Then

Ψ(Pyr(V )) = Ψ(V ) · c +G(Ψ(V )).

Proof: Since Ψ(P ) ∈ F , we know G(Ψ(P )) and G′(Ψ(P )) are well-defined. Thus by Theorem 4.4 we
have

2 ·Ψ(P ×B1) = Ψ(P ) · c + c ·Ψ(P ) +D(Ψ(P ))
= (Ψ(P ) · c +G(Ψ(P ))) +

(
c ·Ψ(P ) +G′(Ψ(P ))

)
.

But by Lemma 5.1 the two terms are equal. Thus we have Ψ(P × B1) = Ψ(P ) · c + G(Ψ(P )) =
c ·Ψ(P ) +G′(Ψ(P )). 2

This theorem gives us a new recursion formula for the cd-index of the Boolean algebra Bn different
from the one Purtill obtained in [17]. It is

Ψ(Bn+1) = Ψ(Bn) · c +G(Ψ(Bn)).

Webster [25] has found similar recursion formulas for the Boolean algebra and the cubical lattice.

Example 5.3 Let V be the polytope in Example 4.6, with cd-index c3 + 8dc + 5cd. We have

Γ(c3 + 8dc + 5cd) = 6 · c2 ⊗ 1 + 9 · c⊗ c + 1⊗ c2 + 8 · d⊗ 1 + 5 · 1⊗ d.

G(c3 + 8dc + 5cd) = 6 · c2d + 9 · cdc + dc2 + 13 · d2.

Hence the cd-index of the pyramid of V is given by

Ψ(Pyr(V )) = c4 + 6 · c2d + 14 · cdc + 9 · dc2 + 13 · d2.
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6 Other operations on polytopes

Let W be an n-dimensional convex polytope with vertex v. Let u be a vector such that W ∩ {x ∈
R
n : u · x ≥ c} = {v}. The vertex figure V of W at the vertex v is defined as the polytope

V = W ∩ {x ∈ Rn : u · x = c− ε}, for small enough ε > 0. We define the truncated polytope Ŵ as
the polytope W ∩ {x ∈ Rn : u · x ≤ c− ε}. The combinatorial structure of V and Ŵ only depends
on W and v, and not on u, c, or ε.

Proposition 6.1 Let W be a convex polytope and let v be a vertex of W . Assume that the vertex
figure at v is the polytope V . Let Ŵ be the polytope W with the vertex v cut off. Then the difference
in the cd-index of Ŵ and W is given by

Ψ(Ŵ )−Ψ(W ) = D(w)−G(w) = G′(w),

where w = Ψ(V ).

Sketch of proof: Stanley showed in [20, Lemma 2.1] that when we make local changes in a polytope
the difference in the cd-indexes only depends on what happens locally. Thus it is enough to consider
the case when W = Pyr(V ) with vertex v. The vertex figure at v is V , and Ŵ is the prism of V ,
Prism(V ). Hence the difference in the cd-indexes is (w · c +D(w)) − (w · c +G(w)), and the result
follows. 2

Example 6.2 Let W be a four-dimensional convex polytope such that at the vertex v it has the vertex
figure V , where V is the three-dimensional polytope mentioned in Examples 4.6 and 5.3. Hence

Ψ(Ŵ )−Ψ(W ) = D(c3 + 8dc + 5cd)−G(c3 + 8dc + 5cd)
= c2d + 6 · cdc + 9 · dc2 + 13 · d2.

Another operation on polytopes is pasting two polytopes along a common facet. We may still
speak about the face lattice and the cd-index of the union, even though the union may not be a
convex polytope.

Lemma 6.3 (Stanley) Let V and W be two polytopes which intersect in a facet F , that is, V ∩W =
F . Then the cd-index of the union V ∪W is given by

Ψ(V ∪W ) = Ψ(V ) + Ψ(W )−Ψ(F ) · c.

Proof: Let P be the face lattice of the facet F . We rewrite the identity as Ψ(V ∪W ) + Ψ(P ∗B2) =
Ψ(V ) + Ψ(W ). Label the facet F in the face lattice of V by FV and similarly label F in the face
lattice of W by FW . Moreover, label the two coatoms in P ∗ B2 by FV and FW . The lemma follows
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by noting that each chain that occurs in these four posets contributes either one term or two terms
to both sides of the identity. 2

As a corollary we obtain:

Corollary 6.4 Let V be a polytope and let F be a facet of V . Let V ∪ Pyr(F ) denote the polytope
which is formed by making a pyramid over the facet F . Then

Ψ(V ∪ Pyr(F )) = Ψ(V ) +G(Ψ(F )).

The Minkowski sum of two subsets X and Y of Rn is defined as

X + Y = {x + y ∈ Rn : x ∈ X, y ∈ Y }.

Notably, the Minkowski sum of two convex polytopes is another convex polytope. For a vector x we
denote the set {λ ·x : 0 ≤ λ ≤ 1} by [0,x]. We say that the non-zero vector x lies in general position
with respect to the convex polytope V if for each u ∈ Rn the line {λ · x + u ∈ Rn : λ ∈ R} intersects
the boundary of the polytope V in at most two points.

Proposition 6.5 Let V be an n-dimensional convex polytope and x a non-zero vector that lies in
general position with respect to the polytope V . Let H be a hyperplane orthogonal to the vector x and
let Proj(V ) be the orthogonal projection of V onto the hyperplane H. Observe that Proj(V ) is an
(n−1)-dimensional convex polytope. Then the cd-index of the Minkowski sum of V and [0,x] is given
by

Ψ(V + [0,x]) = Ψ(V ) +D(Ψ(Proj(V ))).

In order to prove this proposition, we need to consider a larger class of geometric objects than convex
polytopes, namely regular cell complexes. See [19, section 3.8] for more information about regular cell
complexes. Note that the face lattice of a regular cell complex is an Eulerian poset.

Proof of Proposition 6.5: For each facet Fi of the polytope V choose a normal vector ui. Since
the vector x lies in general position, we have that x · ui 6= 0 for all indexes i. Let S+ be the union
of all facets Fi such that x · ui > 0, and let S− be the union of all facets Fi such that x · ui < 0.
Both S+ and S− are homeomorphic to an (n − 1)-dimensional ball and their boundaries agree, that
is, ∂(S+) = ∂(S−).

Let σ ⊆ V be a closed (n − 1)-dimensional cell such that ∂(σ) = ∂(S+) and for each u ∈ Rn the
line {λ · x + u ∈ Rn : λ ∈ R} intersects σ in at most two points. Observe that σ forms a regular cell
complex and its face lattice is isomorphic to the face lattice of Proj(V ). Moreover, σ + [0,x] is also a
regular cell complex whose face lattice is isomorphic to the face lattice of Prism(Proj(V )).

We may now divide the polytope V into two pieces V + and V − such that V = V + ∪ V −, σ =
V + ∩ V −, ∂(V +) = S+ ∪ σ, and ∂(V −) = S− ∪ σ.
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We can now decompose the Minkowski sum V + [0,x] into three pieces. Namely,

V + [0,x] = V − ∪ (σ + [0,x]) ∪ (V + + x).

Moreover, we have that V −∩(σ+[0,x]) = σ and (σ+[0,x])∩(V + +x) = σ+x. We can now compute
the desired cd-index by rearranging these pieces. We obtain

Ψ(V + [0,x]) = Ψ(V −) + Ψ(σ + [0,x]) + Ψ(V + + x)−Ψ(σ) · c−Ψ(σ + x) · c
= Ψ(V −) + Ψ(V +)−Ψ(σ) · c + Ψ(Prism(Proj(V )))−Ψ(Proj(V )) · c
= Ψ(V ) +D(Ψ(Proj(V ))). 2

7 On Simsun permutations

Let S be a set such that S ∪ {0} is a linearly ordered set.

Definition 7.1 An augmented permutation π of length n on S is a list π = (0 = s0, s1, . . . , sn),
where s1, . . . , sn are n distinct elements from the set S.

The descent set of the augmented permutation π is the set D(π) = {i : si−1 > si}. Observe the
descent set of π is a subset of [n] = {1, . . . , n}. We say that π has no double descents if there is no
index i such that si > si+1 > si+2. The variation of a permutation π is given by U(π) = uD(π), where
uS is the ab-monomial u1 · · ·un such that ui = a if i 6∈ S and ui = b if i ∈ S.

Let Rn(S) be the set of augmented permutations on the set S of length n so that any such
permutation begins with an ascent and has no double descents. We let R0(S) be the singleton set
containing the permutation (0). For an augmented permutation π in Rn(S), we define the reduced
variation of π, which we denote by V (π), by replacing each ab in U(π) with d and then replacing
each remaining a by a c. For a subset T of Rn(S) we define V (T ) =

∑
π∈T V (π).

We now ask the following question. Given an Eulerian poset P of rank n+ 1, is it possible to find
in a canonical manner a linearly ordered set S and a subset T of Rn(S) such that Ψ(P ) = V (T )?
Examples of such posets and permutation sets are the Boolean algebra and André permutations, and
the cubical lattice and signed André permutations. See [8, 17]. For more refined identities using such
a poset–permutation set correspondence, see [6, 11, 20].

We will now define three operations on permutations. These will give us a partial answer to our
question.

For a permutation π = (0, s1, . . . , sn) and an element x, we define the concatenation π · x =
(0, s1, . . . , sn, x). We extend this notion for a class T of permutations by T · x = {π · x : π ∈ T}. Let
M be an element larger than all the elements in the linear order S ∪ {0}. For T a subset of Rn(S) we
have that T ·M ⊆ Rn+1(S ∪ {M}). Moreover, we have that V (T ·M) = V (T ) · c.
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We will now define the insert operation. Let M be as just defined and let m be an element smaller
than all the elements in S ∪ {0}. For T ⊆ Rn(S) and x ∈ {m,M}, we define Insert(T, x) to be set of
all augmented permutations (0, s1, . . . , si, x, si+1, . . . , sn) such that

1. (0, s1, . . . , sn) ∈ T ,

2. (0, s1, . . . , si, x, si+1, . . . , sn) ∈ Rn+1(S ∪ {x}),
3. if x is the maximal element M then i 6= n, and

4. if x is the minimal element m then i 6= 0.

That is, we insert x into the permutation (0, s1, . . . , sn) ∈ T such that no double descents occur and
we do not allow the maximal element at the end nor the minimal element at the beginning of the
permutation. Observe that we have Insert(T,M) ∪ Insert(T,m) ⊆ Rn+1(S ∪ {M,m}).

Lemma 7.2 For T ⊆ Rn(S) the two identities V (Insert(T,M)) = G(V (T )) and V (Insert(T,m)) =
G′(V (T )) hold.

Theorem 7.3 Let P be an Eulerian poset of rank n+ 1. Let S ∪{0} be a linearly ordered set, and let
T be a subset of Rn(S) such that Ψ(P ) = V (T ). Introduce a new maximal element M and a minimal
element m to the set S ∪ {0}. Then the following identities hold:

Ψ(Pyr(P )) = V ( Insert(T,M) ∪ T ·M ) ,
Ψ(Prism(P )) = V ( Insert(T,M) ∪ Insert(T,m) ∪ T ·M ) .

Simion and Sundaram defined a class of permutations called simsun permutations; see [22, page
267] and [23]. We will now see how simsun permutations are closely related with the operations
Insert(T, n) and T · n on permutations.

A simsun permutation π of length n is a augmented permutation π = (0, s1, . . . , sn) on the set
{1, . . . , n} of length n such that for all 0 ≤ k ≤ n if we remove the k entries n, n − 1, . . . , n − k + 1
from the permutation π, the resulting permutation does not have any double descents. Let Sn denote
the set of all simsun permutations of length n. We have that Sn ⊆ Rn({1, . . . , n}).

Similarly, we may define a signed simsun permutation π of length n as an augmented permutation
of length n on the set {−n, . . . ,−1, 1, . . . , n} such that exactly one of the elements +i and −i occurs
in the permutation and for all 0 ≤ k ≤ n if we remove the k entries ±n,±(n − 1), . . . ,±(n − k + 1)
from the permutation π, the resulting permutation belongs to Rn−k({−(n−k), . . . ,−1, 1, . . . , n−k}).
This implies that the resulting permutation have no double descents. Let S±n denote the set of all
signed simsun permutations of length n.

Recall that Sn−1 · n denotes the set of all permutations π in Sn so that π(n) = n. We make the
similar convention for S±n−1 · n.
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Corollary 7.4 The sets of all simsun permutations and all signed simsun permutations satisfy the
following recursions:

Sn = Insert(Sn−1, n) ∪ Sn−1 · n,
S±n = Insert(S±n−1, n) ∪ Insert(S±n−1,−n) ∪ S±n−1 · n.

Thus the cd-indexes of the Boolean algebra and the cubical lattice is given by

Ψ(Bn+1) = V (Sn),
Ψ(Cn) = V (S±n ).

8 The shelling components of the simplex

Stanley [20] studies the shelling components of the simplex in order to obtain a formula for the cd-
index of a simplicial Eulerian poset. Namely, if P is a simplicial Eulerian poset of rank n + 1 with
h-vector (h0, . . . , hn) then the cd-index of P is given by Ψ(P ) =

∑n−1
i=0 hi · Φ̌n

i . By using the techniques
we have developed, we now study the cd-polynomials Φ̌n

i .

Recall that Bn is the Boolean algebra, that is, all the subsets of {1, . . . , n} ordered by inclusion.
Let ci be the coatom {1, . . . , n} − {n+ 1− i}. Similarly, for i 6= j let ci,j be the element {1, . . . , n} −
{n + 1 − i, n + 1 − j}, that is, ci,j is the intersection of the two sets ci and cj . Define the poset B′n,i
for 1 ≤ i ≤ n− 1 by

B′n,i =
i⋃

j=1

[∅, cj ] ∪ {{1, . . . , n}}.

That is, B′n,i consists of the maximal element {1, . . . , n} and all the elements below the coatoms
c1, . . . , ci. Since the elements cj,k, where 1 ≤ j ≤ i and i+ 1 ≤ k ≤ n, are only covered by one element
in B′n,i, we know that B′n,i is not an Eulerian poset. However we can obtain an Eulerian poset by
adding an element γ in the following manner. Let Bn,i be the poset B′n,i ∪ {γ}, where the coatom γ
covers all elements cj,k with 1 ≤ j ≤ i and i + 1 ≤ k ≤ n. The poset Bn,i is Eulerian. Observe that
Bn,1 = Bn−1 ∗B2 and Bn,n−1 = Bn. Stanley defines Φ̌n

i by the relation

Ψ(Bn,i) = Φ̌n−1
0 + · · ·+ Φ̌n−1

i−1 .

That is, Φ̌n
0 = Ψ(Bn+1,1) = Ψ(Bn) · c, and for 1 ≤ i ≤ n− 1, Φ̌n

i = Ψ(Bn+1,i+1)−Ψ(Bn+1,i).

We now state the main result of this section.

Theorem 8.1 The following recursion holds for Φ̌n
i : G(Φ̌n

i ) = Φ̌n+1
i+1 .

Proof: We claim that the following identity is true:

Ψ(Bn,i ×B1) + Ψ(Bn ∗B2) = Ψ(Bn+1,i+1) + Ψ(Bn,i ∗B2). (8.1)

We may view B′n,i × B1 as a subposet of Bn+1 by viewing B1 as the poset on {∅, {n + 1}}. Hence
Bn,i × B1 is the poset B′n,i × B1 with two extra elements of ranks n − 1 and n. Label both of these
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elements by γ. Moreover, label the two coatoms in the two posets Bn ∗B2 and Bn,i ∗B2 by {1, . . . , n}
and γ. It is now straightforward to prove equation (8.1) since there is a rank-preserving bijection
between the chains on the right-hand side and the left-hand side. Except for the chains labeled by
(∅, {1}, {1, 2}, . . . , {1, 2, . . . , n + 1}), the bijection is given by reading off the labels of a chain. For
the case when a chain is labeled with (∅, {1}, {1, 2}, . . . , {1, 2, . . . , n + 1}), observe that each of the
four posets has one such chain. This is the only chain that contributes two terms to each side of
equation (8.1).

Recall that Ψ(Bn,i) =
∑i−1
j=0 Φ̌n−1

j . Thus by Theorem 5.2 we have Ψ(Bn,i × B1) =
(∑i−1

j=0 Φ̌n−1
j

)
·

c + G
(∑i−1

j=0 Φ̌n−1
j

)
. Also Ψ(Bn ∗ B2) = Ψ(Bn) · Ψ(B2) = Ψ(Bn) · c = Φ̌n

0 . Similarly, Ψ(Bn+1,i+1) =∑i
j=0 Φ̌n

j = Φ̌n
0 +

∑i
j=1 Φ̌n

j and Ψ(Bn,i ∗B2) = Ψ(Bn,i) · c =
(∑i−1

j=0 Φ̌n−1
j

)
· c. Hence when we expand

the identity (8.1), we havei−1∑
j=0

Φ̌n−1
j

 · c +G

i−1∑
j=0

Φ̌n−1
j

+ Φ̌n
0 = Φ̌n

0 +
i∑

j=1

Φ̌n
j +

i−1∑
j=0

Φ̌n−1
j

 · c.
By cancelling terms we have G(Φ̌n−1

0 +· · ·+Φ̌n−1
i−1 ) = Φ̌n

1 +· · ·+Φ̌n
i , which is equivalent to the conclusion

of the theorem. 2

Stanley conjectured [20, Conjecture 3.1] that the reduced variation of certain classes of permuta-
tions is equal to Φ̌n

i . This conjecture was proved by Hetyei in [11]. We now present a slightly modified
result of this kind. It follows easily by Theorem 8.1 and the techniques of Section 7. Let Sn,k be the
set of simsun permutations of length n ending with the element k.

Corollary 8.2 The reduced variation of the set Sn,k is given by V (Sn,k) = Φ̌n
n−k.

This result follows from induction on n and noting that Sn,k = Insert(Sn−1,k, n) and Sn,n = Sn−1 · n.

9 The mixing operators

Given two posets P and Q, assume that we know Ψ(P ) and Ψ(Q). Are we then able to compute
Ψ(P × Q) from Ψ(P ) and Ψ(Q)? The answer is yes, and it may seen by using the quasi-symmetric
function of a poset P ; see [5]. It is shown in [5] that knowing Ψ(P ) is equivalent to knowing the
quasi-symmetric function F (P ). Also the identity F (P ×Q) = F (P ) ·F (Q) holds. In fact, it is proved
that F is a Hopf algebra homomorphism. Hence we may compute Ψ(P ×Q) from Ψ(P ) and Ψ(Q).

In terms of the ab-index, this quasi-symmetric function method is not explicit. We will now devise
an explicit method. We begin to define the mixing operator. Let I be the set

I = {(r, s, n) : r, s ∈ {1, 2}, n ≥ 2, n ≡ r + s+ 1 mod 2}.

This set will be the index set of the mixing operator. For a coassociative coproduct ∆ : V −→ V ⊗V ,
we define the map ∆k : V −→ V ⊗k by ∆1 is the identity map 1 and ∆k+1 = (∆k ⊗ 1) ◦∆. Observe
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that ∆2 = ∆. The Sweedler notation [24, pages 10-11] for the linear map ∆k is

∆k(x) =
∑
x

x(1) ⊗ · · · ⊗ x(k).

We call each factor x(i) an x-piece. We will use this notation on the two coalgebras A and P.

Definition 9.1 Let u and v be in A and (r, s, n) ∈ I. The mixing operator Mr,s(u, v, n), is defined
by the following recursion:

M1,2(u, v, 2) = u · a · v,
M2,1(u, v, 2) = v · b · u,

M1,s(u, v, n+ 1) =
∑
u

u(1) · a ·M2,s(u(2), v, n),

M2,s(u, v, n+ 1) =
∑
v

v(1) · b ·M1,s(u, v(2), n).

As an example, by the coassociativity of the coproduct we have

M1,1(u, v, 5) =
∑
u

∑
v

u(1) · a · v(1) · b · u(2) · a · v(2) · b · u(3).

Observe that n is the number of pieces in each summand of Mr,s(u, v, n). When r = 1 each summand
begins with a u-piece, while when r = 2 the summands begin with a v-piece. Similarly, s = 1 says
that each summand ends with a u-piece.

In general to compute M1,1(u, v, n) we apply ∆k to u, where k = n+1
2 . Observe that n is odd in

this case. Similarly apply ∆k−1 to v. We obtain

∆k(u) =
∑
u

u(1) ⊗ · · · ⊗ u(k) and ∆k−1(v) =
∑
v

v(1) ⊗ · · · ⊗ v(k−1).

We then combine the u- and v-pieces alternatingly such that there is an a between an adjacent u-piece
and v-piece (reading left to right), otherwise there is a b between. Lastly, we sum over all possible
ways to split u and v by the coproduct. There are similar rules for M1,2(u, v, n), M2,1(u, v, n), and
M2,2(u, v, n).

Theorem 9.2 Let P and Q be two posets. Then

Ψ(P ×Q) =
∑

(r,s,n)∈I
Mr,s(Ψ(P ),Ψ(Q), n).

Equations (4.1) and (4.2) in the proof of Proposition 4.2 are special cases of this theorem.

If w ∈ Fk then ∆k+2(w) = 0. Hence Mr,s(u, v, n) = 0 if n+3−r−s
2 ≥ deg(u) + 2 or n−3+r+s

2 ≥
deg(v) + 2. Hence the sum in Theorem 9.2 has a finite number of non-zero terms, so it is well-defined.
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In order to motivate Theorem 9.2, we will first prove it in the case when the posets P and Q have
R-labelings. We will assume that the reader is familiar with R-labelings. Otherwise, see [8] or [19,
section 3.13]

An edge-labeling λ of a finite poset P is a map which assigns to each edge in the Hasse diagram
of P an element from a total linear order. If y covers x in P then we denote the label on this edge
by λ(x, y). If c = {0̂ = x0 ≺ x1 ≺ . . . ≺ xρ(P ) = 1̂} is a chain then we write the labeling of the chain
c to be the list λ(c) = (λ(x0, x1), λ(x1, x2), · · · , λ(xρ(P )−1, xρ(P ))). An R-labeling λ is an edge-labeling
such that in every interval there is a unique maximal chain where the labels are weakly increasing.

For a maximal chain c = {0̂ = x0 ≺ x1 ≺ . . . ≺ xρ(P ) = 1̂} we define the descent monomial of the
chain c to be u(c) = u1 · · ·uρ(P )−1, where ui = a if λ(xi−1, xi) ≤ λ(xi, xi+1), and ui = b otherwise.
The following lemma follows directly from a result of Björner and Stanley [4, Theorem 2.7].

Lemma 9.3 Let P be a graded poset of rank n + 1. If λ is an R-labeling of P then the ab-index of
P is equal to

Ψ(P ) =
∑
c

u(c),

where the sum is over all maximal chains c.

Assume that the posets P and Q have R-labelings. Then the poset P ×Q has an R-labeling given
as follows. Each edge in the poset P × Q either comes from an edge in P or an edge in Q. Hence
label the edge between (x, z) and (y, z) by the label λP (x, y) and label the edge between (x, z) and
(x,w) by the label λQ(z, w). Moreover let all the labels of the poset P be smaller than the labels of
the poset Q.

A maximal chain c in the poset P × Q corresponds to two maximal chains, one in P and one in
Q. Hence the labels of the chain c are the labels of the corresponding chains in P and Q. If a label is
from the poset P , we call it a P -label. Similarly, a label from Q is called a Q-label. If c begins with a
P -label then we classify this as r = 1, otherwise as r = 2. Similarly, if c ends with a P -label then we
classify this as s = 1, otherwise as s = 2. Moreover, when reading the labels of the chain c in order,
group the P -labels and the Q-labels into runs. Let n be the number of such runs. We say that the
maximal chain c has the type (r, s, n). Observe that (r, s, n) ∈ I.

Let us consider the case when (r, s, n) = (1, 1, 5). This means that the labeling of the chain c looks
like

λ(c) = (λ1, . . . , λi, ν1, . . . , νk, λi+1, . . . , λj , νk+1, . . . , νρ(Q), λj+1, . . . , λρ(P )),

where (λ1, . . . , λρ(P )) is the labeling of a maximal chain cP in P and (ν1, . . . , νρ(Q)) is the labeling of
a maximal chain cQ in Q. Observe also that 1 ≤ i < j ≤ ρ(P )− 1 and 1 ≤ k ≤ ρ(Q)− 1.

Assume that u(cP ) = u = u1 · · ·uρ(P )−1 and u(cP ) = v = v1 · · · vρ(Q)−1. Then the weight of the
maximal chain c is given by

u(c) = u1 · · ·ui−1 · a · v1 · · · vk−1 · b · ui+1 · · ·uj−1 · a · vk+1 · · · vρ(Q)−1 · b · uj+1 · · ·uρ(P )−1.

Observe that the variables ui, uj , and vk are not in the expression for u(c). This because when we
compute u(c), we do not need to compare the label λi with λi+1, the label λj with λj+1, and the label
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νk with νk+1. Moreover the a’s and the b’s occur in the expression for u(c) since at those places we
compare a label from the poset P with a label from Q. There will be an a if the P -label occurs before
the Q-label in the list since the P -labels are smaller than the Q-labels. Similarly, there will be a b if
the Q-label occurs before the P -label.

Recall that we have

∆3(u) =
∑

1≤i<j≤ρ(P )−1

u1 · · ·ui−1 ⊗ ui+1 · · ·uj−1 ⊗ uj+1 · · ·uρ(P )−1,

∆(v) =
∑

1≤k≤ρ(Q)−1

v1 · · · vk−1 ⊗ vk+1 · · · vρ(Q)−1.

Hence if we sum u(c) over all maximal chains c such that c restricted to P is cP , c restricted to Q is
cQ, and c has the type (r, s, n) = (1, 1, 5), we obtain∑

c

u(c) =
∑

1≤i<j≤ρ(P )−1

∑
1≤k≤ρ(Q)−1

u1 · · ·ui−1 · a · v1 · · · vk−1 · b · ui+1 · · ·uj−1

·a · vk+1 · · · vρ(Q)−1 · b · uj+1 · · ·uρ(P )−1

=
∑
u

∑
v

u(1) · a · v(1) · b · u(2) · a · v(2) · b · u(3)

= M1,1(u, v, 5).

Since the mixing operator is linear in u and v, and using Lemma 9.3, we obtain:∑
c

u(c) = M1,1(Ψ(P ),Ψ(Q), 5),

where the sum ranges over all maximal chains c which have the type (r, s, n) = (1, 1, 5). Proceeding
along these lines one can generalize this argument to prove Theorem 9.2 in the case when the two
posets have R-labelings.

10 Proof of Theorem 9.2

We will now prove Theorem 9.2 in the general case, that is, we will not assume P and Q have R-
labelings. We begin by defining a map K from the set of chains of the poset P × Q to the set of
quadruples (dP , dQ, r, s) such that dP is a chain in P , dQ is a chain in Q, and r, s ∈ {1, 2}. We will
do this so that l(dQ) − l(dP ) = r + s − 3, where l(·) denotes the length of the chain. This condition
implies that lengths of the chains dP and dQ differ by at most one.

We now describe the map K. Let c = {(0̂, 0̂) = (x0, y0) < (x1, y1) < · · · < (xk, yk) = (1̂, 1̂)}
be a chain in the poset P × Q. Observe that the chains {0̂ = x0 ≤ x1 ≤ · · · ≤ xk = 1̂} and
{0̂ = y0 ≤ y1 ≤ · · · ≤ yk = 1̂} are weakly increasing.

We will now find two other chains in the posets P and Q. Let z0 = 0̂P and w0 = 0̂Q. Recursively
define

zi = min{xj : yj > wi−1},
wi = max{yj : xj = zi}.
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This recursion ends when wk = 1̂Q since then we cannot find zk+1. Observe that 0̂ = z0 ≤ z1 < z2 <
· · · < zk−1 < zk ≤ 1̂ and 0̂ = w0 < w1 < w2 < · · · < wk = 1̂.

Let dQ be the chain {0̂ = w0 < w1 < w2 < · · · < wk = 1̂}. Let dP be the chain {0̂ = z0 ≤ z1 <
z2 < · · · < zk−1 < zk ≤ 1̂}. Observe that we consider dP as a set, not as a multiset. If z0 = z1 let
r = 2, otherwise r = 1. If zk = 1̂ let s = 2, otherwise s = 1. Now let K(c) = (dP , dQ, r, s).

For a set S of chains of the poset P ×Q, define W (S) = WP×Q(S) to be the sum
∑
c∈S wP×Q(c),

where wP×Q is the weight function defined in Section 3.

Lemma 10.1 Let dP be the chain {0̂ = p0 < p1 < · · · < pk = 1̂} and let dQ be the chain {0̂ = q0 <
q1 < · · · < qk′ = 1̂}, where k′ = k+ r+ s− 3. For the four cases (r, s) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)} we
have:

W (K−1(dP , dQ, 1, 1)) = Ψ([p0, p1]) · a ·Ψ([q0, q1]) · b · · ·a ·Ψ([qk−2, qk−1]) · b ·Ψ([pk−1, pk]),
W (K−1(dP , dQ, 1, 2)) = Ψ([p0, p1]) · a ·Ψ([q0, q1]) · b · · ·b ·Ψ([pk−1, pk]) · a ·Ψ([qk−1, qk]),
W (K−1(dP , dQ, 2, 1)) = Ψ([q0, q1]) · b ·Ψ([p0, p1]) · a · · ·a ·Ψ([qk−1, qk]) · b ·Ψ([pk−1, pk]),
W (K−1(dP , dQ, 2, 2)) = Ψ([q0, q1]) · b ·Ψ([p0, p1]) · a · · ·b ·Ψ([pk−1, pk]) · a ·Ψ([qk, qk+1]).

Here the inserted a’s and b’s alternate.

Proof: We will prove the case when (r, s) = (1, 2). The other three cases are proved by a similar
argument.

Let c be a chain such that K(c) = (dP , dQ, 1, 2). Observe that the pair (pi, qi) belongs to the chain
c for all i = 0, . . . , k. Similarly, the pair (pi, qi−1) may or may not belong to c for i = 1, . . . , k. Any
other element of the chain c belongs to either an interval of the form [(pi−1, qi−1), (pi, qi−1)] or of the
form [(pi, qi−1), (pi, qi)].

More formally, the chain c contains the pairs (pi, qi). That is,

{(p0, q0), (p1, q1), . . . , (pk, qk)} ⊆ c.

Also, the chain c is a subset of the union of these intervals. That is,

c ⊆
k⋃
i=1

[(pi−1, qi−1), (pi, qi−1)] ∪ [(pi, qi−1), (pi, qi)].

It is easy to see that any chain c′ of P × Q that fulfills these two conditions satisfies K(c′) =
(dP , dQ, 1, 2).

Hence when computing the weight of the chain c, the interval [(pi−1, qi−1), (pi, qi−1)] contributes
Ψ([pi−1, pi]), the pair (pi, qi−1) contributes a, the interval [(pi, qi−1), (pi, qi)] contributes Ψ([qi−1, qi]),
and finally the pair (pi, qi) contributes b. This completes the proof of the lemma in the case when
(r, s) = (1, 2). 2
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Proof of Theorem 9.2: For (r, s, n) in the index set I, define P (r, s, n) be the set of chains in the
poset P ×Q such that

P (r, s, n) = {c : K(c) = (dP , dQ, r, s), where l(dP ) + l(dQ) = n}.

We would like to compute W (P (1, 2, 2 · k)). To do this we must consider all possible ways to have
a chain in P of length k and a chain in Q of length k. We may compute all such possibilities by
considering the two expressions ∆k(P ) and ∆k(Q). By Lemma 10.1, we have that

W (P (1, 2, 2 · k)) =
∑
P

∑
Q

Ψ(P(1)) · a ·Ψ(Q(1)) · b · · ·b ·Ψ(P(k)) · a ·Ψ(Q(k))

=
∑
u

∑
v

u(1) · a · v(1) · b · · ·b · u(k) · a · v(k)

= M1,2(u, v, 2 · k),

where u = Ψ(P ) and v = Ψ(Q). The second equality holds since Ψ is a coalgebra map. The last
equality is the expression for the mixing operator.

One may generalize this argument to obtain thatW (P (r, s, n)) = Mr,s(u, v, n) for (r, s, n) belonging
to the index set I. The theorem follows by summing over all triplets in the index set I. 2

Define an algebra map κ from F to itself by κ(a) = a − b and κ(b) = 0. Since the monomial
aρ(P )−1 has coefficient 1 in the expansion of Ψ(P ), we have that κ(Ψ(P )) = (a− b)ρ(P )−1.

Recall that in the definition of Ψ(P ) we sum over all chains in the poset P . If we condition on the
smallest non-zero element in the chain, we obtain the following expression:

Ψ(P ) = (a− b)ρ(P )−1 +
∑

0̂<x<1̂

(a− b)ρ(x)−1 · b ·Ψ([x, 1̂])

= κ(Ψ(P )) +
∑

0̂<x<1̂

κ(Ψ([0̂, x])) · b ·Ψ([x, 1̂])

= κ(Ψ(P )) +
∑
P

κ(Ψ(P(1))) · b ·Ψ(P(2)).

We use this identity to find a formula for Ψ(P �Q) in terms of Ψ(P ) and Ψ(Q). Note that a non-
zero element in P �Q is of the form (x, y), where 0̂P < x ≤ 1̂P and 0̂Q < y ≤ 1̂Q. Moreover, the rank of
the element (x, y) is ρ(x) + ρ(y)− 1. Hence, κ(Ψ([0̂, (x, y)])) = (a−b)ρ((x,y))−1 = (a−b)ρ(x)+ρ(y)−2 =
κ(Ψ([0̂, x])) · κ(Ψ([0̂, y])).

We now obtain

Ψ(P �Q) = κ(Ψ(P �Q)) +
∑

0̂<(x,y)<(1̂,1̂)

κ(Ψ([0̂, (x, y)])) · b ·Ψ([(x, y), (1̂, 1̂)])

= κ(Ψ(P )) · κ(Ψ(Q)) +
∑

0̂<(x,y)<(1̂,1̂)

κ(Ψ([0̂, x])) · κ(Ψ([0̂, y])) · b ·Ψ([x, 1̂]× [y, 1̂])

= κ(Ψ(P )) · κ(Ψ(Q)) +
∑

0̂<x<1̂

κ(Ψ([0̂, x])) · κ(Ψ(Q)) · b ·Ψ([x, 1̂])
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+
∑

0̂<y<1̂

κ(Ψ(P )) · κ(Ψ([0̂, y])) · b ·Ψ([y, 1̂])

+
∑

0̂<x<1̂
0̂<y<1̂

κ(Ψ([0̂, x])) · κ(Ψ([0̂, y])) · b ·Ψ([x, 1̂]× [y, 1̂]).

Here the second term comes from the case when y = 1̂, the third from the case x = 1̂, and the last
from the remaining case. This equation can be expressed in Sweedler notation as

Ψ(P �Q) = κ(Ψ(P )) · κ(Ψ(Q)) +
∑
P

κ(Ψ(P(1))) · κ(Ψ(Q)) · b ·Ψ(P(2))

+
∑
Q

κ(Ψ(P )) · κ(Ψ(Q(1))) · b ·Ψ(Q(2))

+
∑
P

∑
Q

κ(Ψ(P(1))) · κ(Ψ(Q(1))) · b ·Ψ(P(2) ×Q(2)).

Letting u = Ψ(P ) and v = Ψ(Q), and using the fact that the ab-index is a coalgebra homomorphism
we have

Ψ(P �Q) = κ(u) · κ(v) +
∑
u

κ(u(1)) · κ(v) · b · u(2)

+
∑
v

κ(u) · κ(v(1)) · b · v(2) +
∑
u

∑
v

κ(u(1)) · κ(v(1)) · b · M(u(2), v(2)).

Here M(u, v) denotes the expression in Theorem 9.2. Hence, we conclude that we can compute
Ψ(P � Q) in terms of Ψ(P ) and Ψ(Q). Since L(U × V ) = L(U) � L(V ) for two convex polytopes U
and V , we obtain the following proposition.

Proposition 10.2 Let U and V be two convex polytopes. Then the ab-index of their Cartesian
product U × V is given by

Ψ(U × V ) = κ(u) · κ(v) +
∑
u

κ(u(1)) · κ(v) · b · u(2)

+
∑
v

κ(u) · κ(v(1)) · b · v(2) +
∑
u

∑
v

κ(u(1)) · κ(v(1)) · b · M(u(2), v(2)),

where u = Ψ(U) and v = Ψ(V ).

11 Concluding Remarks

There are a number of questions that appear at this point in the research. We put forward a few of
them.

In Section 8 we found new properties that hold for the cd-index of the shelling components of the
simplex. In [6] the cd-index of shelling components of the cube have been studied. Are there any
identities between the cd-indexes of the shelling components of the cube involving coproducts?

Stanley conjectured that among all Gorenstein∗ lattices of rank n, the Boolean algebra Bn mini-
mizes all the coefficients of the cd-index [21, Conjecture 2.7]. We present the following generalization:
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Conjecture 11.1 Let F be a polytope of dimension d − 1. Then among all d-dimensional polytopes
having F as a facet, the pyramid of F minimizes all the coefficients of the cd-index.

Let L be a linear functional on the Newtonian coalgebra V . Then the linear map DL defined on
V by

DL(x) =
∑
x

x(1) · L(x(2)) · x(3)

is a coderivation on V . That is, DL satisfies the relation ∆ ◦ DL = (DL ⊗ 1 + 1 ⊗ DL) ◦ ∆. In
the Newtonian coalgebras P, E , A, and F are there any coderivations which have a combinatorial
interpretation?

In Section 9 when computing Ψ(P � Q) in terms of Ψ(P ) and Ψ(Q), many terms with negative
signs occur. Could one find a more bijective formula for Ψ(P �Q), such as the formula for Ψ(P ×Q)
in Theorem 9.2? More importantly, consider the case when P and Q are Eulerian, and we have Ψ(P )
and Ψ(Q) as cd-indexes. Do there exist formulas for Ψ(P ×Q) and Ψ(P �Q) where the computation
is completely inside the algebra F , that is, where all terms are cd-monomials. For instance, Hetyei
has asked if there are any explicit formulas for the cd-index of products of simplices.

There is one more operation on graded posets which preserves the Eulerian property. Let P and Q
be two posets of the same rank n+ 1. Define P ◦Q to be the poset (P −{0̂, 1̂}) + (Q−{0̂, 1̂})∪{0̂, 1̂}.
That is, P ◦Q is formed by pairwise identifying the extremal elements of P and Q. We have Ψ(P ◦Q) =
Ψ(P ) + Ψ(Q) − (a − b)n. When P and Q are Eulerian of the same odd rank 2k + 1, we have that
P ◦Q is Eulerian and Ψ(P ◦Q) = Ψ(P ) + Ψ(Q)− (c2 − 2 · d)k.

In order to obtain a better understanding of the cd-index of an Eulerian poset P , one would need
to compute more examples. It would be interesting to implement the algorithm in Section 3 in either
Maple or Mathematica.

Let V and W be two convex polytopes in Rn. The Minkowski sum V +W is also a convex polytope.
Assume that we know the cd-index of the two polytopes V and W . This does not give us enough
information to compute the cd-index of the Minkowski sum V +W . What additional information do
we need of V and W in order to compute Ψ(V +W )? Recall that in Proposition 6.5 this was solved
when one of the polytopes is a line segment in general direction. Recently, the authors together with
Louis Billera have found an answer in the case when one of the polytopes is a line segment not in
general direction.
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