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Abstract

We determine the cd-index of the induced subdivision arising from a manifold arrangement.
This generalizes earlier results in several directions: (i) One can work with manifolds other than
the n-sphere and n-torus, (ii) the induced subdivision is a Whitney stratification, and (iii) the
submanifolds in the arrangement are no longer required to be codimension one.
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1 Introduction

In the paper [12] Ehrenborg, Goresky and Readdy extend the theory of flag enumeration in poly-
topes and regular CW-complexes to Whitney stratified manifolds. Their key insight is to replace
flag enumeration with Euler flag enumeration, that is, a chain of strata is weighted by the Euler
characteristic of each link in the chain; see Theorem 5.4. The classical results for the generalized
Dehn–Sommerville relations and the cd-index [1, 2, 31] carry over to this setting.

The cd-index of a polytope, and more generally, an Eulerian poset, is a minimal encoding
of the flag vector having coalgebraic structure which reflects the geometry of the polytope [13].
It is known that the coefficients of the cd-index of polytopes, spherically-shellable posets and
Gorenstein* posets are nonnegative [23, 31]. Hence, inequalities among the cd-coefficients imply
inequalities among the flag vector entries of the original objects. For Whitney stratified manifolds,
the coefficients of the cd-index are no longer restricted to being nonnegative [12, Example 6.15].
This broadens the research program of understanding flag vectors of polytopes to that of manifolds.
See [10] for the best currently known inequalities for flag vectors of polytopes.

One would like to understand the combinatorics of naturally occurring Whitney stratified spaces.
One such example is that of manifold arrangements. These arrangements are motivated by subspace
arrangements in Euclidean space. Classically Goresky and MacPherson determined the cohomol-
ogy of the complement of subspace arrangements using intersection homology [21]. The stable
homotopy type of the complement was studied by Ziegler and Živaljević [37]. Arrangements of
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submanifolds and subvarieties have been considered in connection with blowups in algebraic geom-
etry; see for instance MacPherson and Procesi’s work on conical stratification [25], and Li’s work
on arrangements of subvarieties [24]. Face enumeration issues were examined by Zaslavsky [36] and
Swartz [34]. See also [16] where Forge and Zaslavsky extend the notion of hyperplane to topological
hyperplanes.

The case of toric arrangements, that is, a collection of subtori inside an n-dimensional torus Tn,
was studied by Novik, Postnikov and Sturmfels [28] in reference to minimal cellular resolutions
of unimodular matroids. Other results for toric arrangements include that of De Concini and
Procesi [8], who computed the cohomology of the complement and related this to polytopal lattice
point enumeration, and D’Antonio and Delucchi [7], who considered the homotopy type and the
fundamental group of the complement.

Billera, Ehrenborg and Readdy studied oriented matroids and the lattice of regions [4]. The cd-
index of this lattice only depends upon the flag f -vector of the intersection lattice, which is a smaller
poset. Their work shows how to determine the cd-index of induced subdivisions of the sphere Sn.
Ehrenborg, Readdy and Slone considered toric arrangements that induce regular subdivisions of
the torus Tn [15]. Yet again, the associated cd-index depends only upon the flag f -vector of the
intersection poset.

In this paper we consider arrangements of manifolds and the subdivisions they induce. In the
manifold setting the computation of the cd-index now depends upon the intersection poset and
the Euler characteristic of the elements of this quasi-graded poset. This extends the earlier studied
spherical and toric arrangements [4, 15].

In order to obtain this generalization, we first review the notion of a quasi-graded poset. See
Section 2. This allows us to work with intersection posets that are not necessarily graded. A short
discussion of the properties of the Euler characteristic with compact support and its relation to
the Euler characteristic is included. We then introduce manifold arrangements in Section 3. The
intersection poset of an arrangement is defined. This notion is not unique. However, this gives us the
advantage of choosing the most suitable poset for calculations. In Section 4 the Euler characteristic
of the complement is computed for these arrangements. This is a manifold analogue of the classical
result concerning the number of regions of a hyperplane arrangement [35]. In Section 5 we review
the notions of Eulerian quasi-graded posets, the cd-index and Whitney stratified spaces.

In the oriented matroid setting the coalgebraic structure of flag vector enumeration was essential
in developing the results. In Section 6 we describe the underlying coalgebraic structure in the more
general quasi-graded poset setting and summarize the essential operators from [4]. Using these
operators, we define the operator G that will be key to the main result.

In Section 7 we state and prove the main result; see Theorem 7.3. The previous proof tech-
niques for studying subdivisions induced by oriented matroids and toric arrangements depended
upon finding a natural map from the face poset of the given subdivision to the intersection poset
and studying the inverse image of a chain under this map. See the proofs of [3, Theorem 4.5],
[4, Theorem 3.1] and [15, Theorems 3.12 and 4.10]. In the more general setting of manifold ar-
rangements we can now avoid this step by forming another Whitney stratification having the same
cd-index; see Proposition 7.6. Namely, we can choose each strata to be a submanifold in the inter-
section poset without those points included in smaller submanifolds. (It is customary to refer to a
single stratum by the plural strata.) In the classical case of hyperplane arrangements this gives a

2



stratification into disconnected strata.

Finally in Section 8 we revisit two important cases studied earlier: spherical and toric ar-
rangements. These arrangements have the property that the Euler characteristic of an element of
dimension k in the intersection lattice only depends upon k, that is, the Euler characteristic is given
by 1 + (−1)k, respectively the Kronecker delta δk,0. In both of these cases Theorem 7.3 reduces to
a result which only depends on the intersection poset. The original work for spherical and toric
arrangements required the induced subdivision to yield a regular subdivision on the sphere Sn,
respectively, the torus Tn [4, 15]. This regularity condition is no longer necessary in the arena of
Whitney stratified spaces.

An illuminating sample of this theory is to consider a complete flag in n-dimensional Euclidean
space. Intersecting this flag with the (n − 1)-dimensional unit sphere Sn−1 gives a (nested) ar-
rangement of spheres, one of each dimension. The intersection poset is a chain of rank n. The
induced subdivision of the sphere consists of two cells of each dimension i, 0 ≤ i ≤ n − 1. The
face poset is the butterfly poset of rank n + 1. It is straightforward to see that the classical
Billera–Ehrenborg–Readdy formula holds in this case; see Example 8.3.

We end with some open questions in the concluding remarks.

2 Preliminaries

A quasi-graded poset is a triplet (P, ρ, ζ) where

(i) P is a finite poset with a minimal element 0̂ and maximal element 1̂,

(ii) ρ is a function from P to N such that ρ(0̂) = 0 and x < y implies ρ(x) < ρ(y), and

(iii) ζ is a function in the incidence algebra of P such that for all x in P we have ζ(x, x) = 1.

The notion of quasi-graded poset is due to the authors and Goresky. See [12] for further details and
see [32] for standard poset terminology. In this paper we will assume ζ is integer-valued, though in
general this is not necessary.

Condition (iii) guarantees that ζ is invertible in the incidence algebra of P . Let µ denote the
inverse of ζ. Observe that when the weighted zeta function ζ is the classical zeta function ζ, that
is, ζ(x, y) = 1 for all x ≤ y, the function µ is the Möbius function µ.

Recall that a subspace arrangement is a collection {Vi}mi=1 of subspaces in n-dimensional Eu-
clidean space. We allow a subspace Vi to be a proper subspace of another subspace Vj of the
arrangement. However, if a subspace Vi is the intersection of other subspaces in the arrangement,
that is, Vi =

⋂
j∈J Vj for J ⊆ {1, 2, . . . ,m} − {i}, the subspace Vi is redundant for our purposes,

and can be removed.

The intersection lattice of a subspace arrangement forms a quasi-graded poset (P, ρ, ζ) where P
is the collection of all intersections of subspaces ordered by reverse inclusion. The minimal element
is the ambient space Rn and the maximal element is the intersection V1 ∩ · · · ∩ Vm. The rank
function ρ is given by the codimension, that is, ρ(x) = n − dim(x). Finally, we let the weighted
zeta function be given by the classical zeta function ζ, where ζ(x, y) = 1 for x ≤ y.
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One of the topological tools we will need is the Euler characteristic with compact support χc.
For a reference, see the article by Gusein-Zade [22]. We review two essential properties. First, the
Euler characteristic with compact support is a valuation, that is, it satisfies

χc(A) + χc(B) = χc(A ∩B) + χc(A ∪B), (2.1)

where the two sets A and B are formed by finite intersections, finite unions and complements of
locally closed sets. (A locally closed set is the intersection of an open set and a closed set.) The
second key property relates the usual Euler characteristic χ with χc.

Proposition 2.1. For an n-dimensional manifold M that is not necessarily compact, the Euler
characteristic χ(M) and the Euler characteristic with compact support χc(M) satisfy the relation

χc(M) = (−1)n · χ(M). (2.2)

Proof. By Poincaré duality for non-compact manifolds M we have

H i
c(M ;Z2) ∼= Hn−i(M ;Z2).

The result follows by taking dimension of this isomorphism, multiplying by the sign (−1)i and
summing over all i.

Observe that by computing the (co)-homology groups over the field of two elements, we also
cover the case when the manifold is non-orientable.

3 Manifold arrangements

Given an n-dimensional compact manifold M without boundary and a collection of submanifolds
{Ni}mi=1 of M each without boundary, we call this collection a manifold arrangement if it satisfies
Bott’s [6, Section 5] clean intersection property, defined as follows. For every point p in the man-
ifold M , there exist (i) a neighborhood U of p, (ii) a neighborhood W in Rn of the origin, (iii) a
subspace arrangement {Vi}ki=1 in Rn, and (iv) a diffeomorphism φ : U −→W such that the point p
is mapped to the origin and the collection of manifolds restricted to the neighborhood U , that is,
{Ni ∩ U}mi=1 is mapped to the restriction of the subspace arrangement {Vi ∩W}ki=1.

Similar to the setup for subspace arrangements we allow a manifold Ni to be a proper sub-
manifold of another manifold Nj in the arrangement; see Examples 8.3 and 8.7. A manifold Ni is
redundant if it is the intersection of other manifolds in the arrangement, that is, Ni =

⋂
j∈J Nj for

J ⊆ {1, 2, . . . ,m} − {i}.

Example 3.1. Let M be the sphere x2 + y2 + z2 = 2, and let {N1, N2} consist of the two circles
x2+y2 = 1, z = 1; and x = 1, y2+z2 = 1. Observe that the line x = z = 1 is tangent to both circles
at their point of intersection p = (1, 0, 1). Hence at the point p the clean intersection property is
not satisfied so that {N1, N2} is not a manifold arrangement.
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Figure 1: The two possible intersection posets for the arrangement in Example 3.5.

Proposition 3.2. An intersection
⋂
i∈I Ni where I ⊆ {1, . . . ,m} in a manifold arrangement

{Ni}mi=1 of a compact manifold M consists of a disjoint union of a finite number of connected
manifolds.

Proof. Assume that the intersection
⋂
i∈I Ni consists of an infinite number of connected compo-

nents. Pick a point pj from each connected component. Since M is compact the sequence {pj}j≥1
has a convergent subsequence. Let p be the limit point of this subsequence. Observe now that the
clean intersection property does not hold at p, contradicting the assumption of the existence of an
infinite number of components.

The clean intersection property implies that the neighborhood of a point in the intersection⋂
i∈I Ni is a relatively open ball, that is, each connected component is a manifold.

Example 3.3. To illustrate why compactness is a necessary condition, consider the two curves
y = sin(x) and y = − sin(x) in the plane R2. They intersect in an infinite number of points.

The connected components in Proposition 3.2 could be manifolds of different dimensions. We
illustrate this behavior in Example 3.4.

Example 3.4. Let A, B, C and D be the following four 2-dimensional spheres in R4:

A = {(x, y, z, w) : x = 0, (y − 1)2 + z2 + w2 = 1},
B = {(x, y, z, w) : x2 + y2 + (z − 1)2 = 1, w = 0},
C = {(x, y, z, w) : (x− 9)2 + y2 + z2 = 2, w = 0},
D = {(x, y, z, w) : (x− 11)2 + y2 + z2 = 2, w = 0}.

The spheres A and B intersect in two points, the spheres C and D intersect in a circle, and
there are no other intersections. Now construct the connected sums A#C and B#D by attaching
disjoint tubes. We obtain two spheres A#C and B#D which intersect in two points and a circle.
Finally, take the one-point compactification of R4 to obtain an arrangement in the four-dimensional
sphere S4.

We now introduce the notion of intersection poset. Depending on particular circumstances there
could be several suitable intersection posets for a given arrangement.

Example 3.5. Let M be the sphere x2 + y2 + z2 = 1. Let {C1, C2} be the arrangement consisting
of the two circles x2 + y2 = 1, z = 0; and x = 0, y2 + z2 = 1, which intersect in two points p1
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and p2. We can either view these two points as separate elements in an intersection poset or as one
zero-dimensional sphere S0. We will see that both views are useful. The two possible intersection
posets are displayed in Figure 1.

Definition 3.6. An intersection poset P of a manifold arrangement {Ni}mi=1 of a compact mani-
fold M is a poset whose elements are ordered by reverse inclusion that satisfies:

(i) The empty set is an element of P .

(ii) Each non-empty element of P is a disjoint union of connected components, all of the same
dimension, of a non-empty intersection

⋂
i∈I Ni where I ⊆ {1, . . . ,m}.

(iii) Given a connected component C of an intersection
⋂
i∈I Ni, there exists exactly one element

of P having C as one of its connected components.

Conditions (ii) and (iii) imply that each intersection can be written uniquely as a disjoint union of
non-empty elements of P .

(iv) Let I ⊆ J be two index sets. Then we have unique subsets A and B of P − {∅} such that⊔
x∈A

x =
⋂
i∈I

Ni ⊇
⋂
j∈J

Nj =
⊔
y∈B

y.

If x ∈ A and y ∈ B intersect non-trivially then the element x contains the element y, that is,

x ∩ y 6= ∅ =⇒ x ⊇ y.

The condition that the elements of P consist of manifolds all of the same dimension ensures that
the dimension of a non-empty element of P is well-defined. Also note that condition (iv) mimics
the condition of the frontier for stratified spaces; see equation (5.3).

Example 3.7. Let M be a compact manifold of dimension greater than one and let N1 and N2

be two one-dimensional submanifolds of M , that is, N1 and N2 are closed curves. Assume that
N1 and N2 intersect in k points. Then the number of possible intersection posets of the manifold
arrangement {N1, N2} is given by the kth Bell number, that is, the number of set partitions of a
k-element set.

As an example of an intersection poset, we may take the elements to consist of all connected
components of the non-empty intersections. This is the approach taken in the paper [15] when
studying toric arrangements. However, this does not work for spherical arrangements since the
zero-dimensional sphere consists of two points and hence is disconnected. See Section 8 for further
discussion regarding these two special cases.

Example 3.8. Let {Ni}mi=1 be a manifold arrangement of a manifold M such that each intersection⋂
i∈I Ni is pure, that is, each component of

⋂
i∈I Ni has the same dimension. Then as an intersection

poset we may choose

L =

{⋂
i∈I

Ni : I ⊆ {1, . . . ,m}

}
∪ {∅}.
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Observe that this intersection poset is indeed a lattice and hence it is called the intersection lattice
of the arrangement. However, as Example 3.4 shows there are arrangements which do not have an
intersection lattice.

Finally, we define a quasi-graded intersection poset (P, ρ, ζ) of a manifold arrangement {Ni}mi=1

of a manifold M to consist of (i) an intersection poset P of the arrangement, (ii) the rank function ρ
given by ρ(x) = dim(M) − dim(x) and ρ(∅) = dim(M) + 1, and (iii) the weighted zeta function ζ
given by the classical zeta function ζ.

4 The complement of a manifold arrangement

We define the manifold Zaslavsky invariant of a quasi-graded poset (P, ρ, ζ) with respect to a
function f defined on P to be

ZM (P, ρ, ζ; f) =
∑

0̂≤x≤1̂

(−1)ρ(x) · µ(0̂, x) · ζ(x, 1̂) · f(x).

In our applications the elements of the poset will be geometric objects and the function f will be the
Euler characteristic χ. In the case when f is integer-valued the manifold Zaslavsky invariant ZM
is an integer.

Theorem 4.1. Let {Ni}mi=1 be a manifold arrangement in a manifold M with quasi-graded inter-
section poset (P, ρ, ζ), and where χ is the Euler characteristic of the elements in the intersection
poset. Then the Euler characteristic of the complement is given by

χ

(
M −

m⋃
i=1

Ni

)
= ZM (P, ρ, ζ;χ).

Proof. For a manifold x in the intersection poset P , define x◦ by

x◦ = x−
⋃
y$x

y = x−
⋃
y>x

y, (4.1)

that is, x◦ consists of all points in x not contained in any submanifold in P . Observe that x◦ is a
manifold that is not necessarily compact. Directly for all submanifolds x in the intersection poset
we have the following disjoint union:

x =
•⋃

x≤y
y◦.

Applying the Euler characteristic with compact support, and using the fact χc is additive on disjoint
unions, we have

χc(x) =
∑
x≤y

χc(y
◦).
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Möbius inversion yields

χc(y
◦) =

∑
y≤x

µ(y, x) · χc(x).

By setting y to be the entire manifold M , that is, the minimal element in the intersection poset P ,
using Proposition 2.1 and observing that (−1)dim(M) = (−1)ρ(x) · (−1)dim(x), the result follows.

Theorem 4.1 is an extension of Zaslavsky’s classical result on enumerating the number of regions
of a hyperplane arrangement [35]. Before stating his result, we define the Zaslavsky invariant of a
quasi-graded poset (P, ρ, ζ) to be

Z(P, ρ, ζ) =
∑

0̂≤x≤1̂

(−1)ρ(x) · µ(0̂, x) · ζ(x, 1̂).

See [15] for the graded poset case. Zaslavsky’s immortal result can now be stated as follows.

Theorem 4.2. Let {Vi}mi=1 be a hyperplane arrangement in Rn with intersection lattice L. Then
the number of chambers in the complement of the hyperplane arrangement is given by Z(L, ρ, ζ).

For our purposes we need to extend Theorem 4.2 to subspace arrangements:

Theorem 4.3. Let {Vi}mi=1 be a subspace arrangement in Rn with quasi-graded intersection poset
(P, ρ, ζ) and let Sn−1 be an (n − 1)-dimensional sphere centered at the origin. Then the Euler
characteristic of the complement of the arrangement in the sphere Sn−1 is given by

χ

(
Sn−1 −

m⋃
i=1

Vi

)
= Z(P, ρ, ζ).

Proof. Observe that {Sn−1 ∩ Vi}mi=1 is a spherical arrangement on the sphere Sn−1. Furthermore,
the subspace arrangement and the spherical arrangement have the same intersection poset P . Hence
by Theorem 4.1 the Euler characteristic of the complement is given by

χ

(
Sn−1 −

m⋃
i=1

Vi

)
=
∑
x∈P

(−1)ρ(x) · µ(0̂, x) · χ(x)

=
∑
x∈P

(−1)ρ(x) · µ(0̂, x) ·
(

(−1)dim(x) + 1
)

=
∑
x∈P

(
(−1)n + (−1)ρ(x)

)
· µ(0̂, x)

=
∑
x∈P

(−1)ρ(x) · µ(0̂, x),

where in the third step we use ρ(x)+dim(x) = n and in the fourth step we use
∑

x∈P µ(0̂, x) = 0.

We should be mindful that Z(P, ρ, ζ) only depends on the quasi-graded poset structure, whereas
ZM (P, ρ, ζ; f) also depends on the function values f(x) for elements x in P .
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5 The cd-index and Whitney stratifications

In this section we review the theory of the cd-index for Eulerian quasi-graded posets and the
important subclass of face posets of manifolds which have Whitney stratified boundaries. For more
details, see the article [12].

Let a and b be two non-commutative variables. Given a quasi-graded poset (P, ρ, ζ), the weight
of a chain c = {0̂ = x0 < x1 < · · · < xk = 1̂} is

wt(c) = (a− b)ρ(x0,x1)−1 · b · (a− b)ρ(x1,x2)−1 · b · · ·b · (a− b)ρ(xk−1,xk)−1, (5.1)

where ρ(x, y) denotes the difference ρ(y)−ρ(x). Note that the weight of a chain is an ab-polynomial
with integer coefficients homogeneous of degree ρ(0̂, 1̂)− 1 = ρ(P )− 1. Furthermore, the weighted
zeta function of the chain c is the product

ζ(c) = ζ(x0, x1) · ζ(x1, x2) · · · ζ(xk−1, xk).

The ab-index of the quasi-graded poset (P, ρ, ζ) is defined to be

Ψ(P, ρ, ζ) =
∑
c

ζ(c) · wt(c),

where the sum ranges over all chains c in the quasi-graded poset P . Similarly, the ab-index of
a quasi-graded poset (P, ρ, ζ) is an ab-polynomial homogeneous of degree ρ(P ) − 1 with integer
coefficients.

Remark 5.1. An alternative definition of the ab-index of a quasi-graded poset of rank n + 1
is to define the flag f -vector by f(S) =

∑
c ζ(x0, x1) · ζ(x1, x2) · · · ζ(xk−1, xk), where the sum is

over all chains c = {0̂ = x0 < x1 < · · · < xk = 1̂} satisfying S = {ρ(x1), . . . , ρ(xk−1)}. The
flag h-vector is then given by h(S) =

∑
T⊆S(−1)|S−T | · f(T ). Finally, the ab-index is the sum

Ψ(P, ρ, ζ) =
∑

S h(S) · uS , where the monomial uS = u1u2 · · ·un is given by ui = a if i 6∈ S and
ui = b if i ∈ S.

In [12, Section 3] the definition of Eulerian poset is extended to quasi-graded posets. A quasi-
graded poset (P, ρ, ζ) is Eulerian if for all elements x < z in the poset P the following equality
holds: ∑

x≤y≤z
(−1)ρ(x,y) · ζ(x, y) · ζ(y, z) = 0. (5.2)

From [12, Theorem 4.2] we have that

Theorem 5.2 (Ehrenborg–Goresky–Readdy). The ab-index of an Eulerian quasi-graded poset
(P, ρ, ζ) can be written in terms of c = a + b and d = a · b + b · a.

When the ab-index is expressed in terms of c and d, we call it the cd-index. Also note
that the variable c has degree 1 and d has degree 2. Like the ab-index, the cd-index satisfies
Ψ(P, ρ, ζ) ∈ Z〈c,d〉.

Observe that when P is a graded poset and the weighted zeta function ζ is the classical zeta
function ζ, condition (5.2) reduces to the classical notion of an Eulerian poset. See [12, Section 3] for
a detailed discussion. Furthermore, Theorem 5.2 reduces to the usual notion of the cd-index [2, 31].
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Define the involution u 7−→ u∗ on ab-polynomials by reading each monomial in reverse, that is,
(u1u2 · · ·un)∗ = un · · ·u2u1 where each ui is either a or b. Observe that this involution restricts to
cd-polynomials as well, since c∗ = c and d∗ = d. Define the dual of a quasi-graded poset (P, ρ, ζ)
to be (P ∗, ρ∗, ζ

∗
) where P ∗ is the dual poset, that is, x ≤P ∗ y if and only if y ≤P x, ρ∗(x) = ρ(x, 1̂)

and ζ
∗
(x, y) = ζ(y, x). Directly it follows

Ψ(P ∗, ρ∗, ζ
∗
) = Ψ(P, ρ, ζ)∗.

We now review the notion of a Whitney stratification.

Definition 5.3. A stratification Ω of a manifold M is a disjoint union of smaller manifolds, called
strata, whose union is M . We assume that the strata satisfy the condition of the frontier, that is,
for two strata X and Y in Ω, we have

X ∩ Y 6= ∅ ⇐⇒ X ⊆ Y . (5.3)

This condition defines a partial order on the set of strata, that is, it defines the face poset P of
the stratification by X ≤P Y if and only if X ⊆ Y . Furthermore, for the stratification Ω to be a
Whitney stratification, each strata has to be a (locally closed, not necessarily connected) smooth
submanifold of M and Ω must satisfy Whitney’s conditions (A) and (B):

Let X <P Y and suppose yi ∈ Y is a sequence of points converging to some x ∈ X and
that xi ∈ X converges to x. Also assume that (with respect to some local coordinate
system on the manifold M) the secant lines `i = xiyi converge to some limiting line `
and the tangent planes TyiY converge to some limiting plane τ . Then the following
inclusions hold:

(A) TxX ⊆ τ and (B) ` ⊆ τ. (5.4)

We refer the reader to [9, 20, 21, 26] for a more detailed discussion. Note that we allow our
strata to be disconnected. This will be essential in Section 7.

One important consequence of a Whitney stratification is that the link of a strata in another
strata is well-defined. Let X be a k-dimensional strata and p a point in X. Let Y be another
strata such that X ≤ Y . Let Np be a normal slice at p to X, that is, a submanifold such that
dim(X) + dim(Np) = dim(M) and X ∩ Np = {p}. Let Bε(p) be a small ball centered at x of
radius ε > 0. Then the homeomorphism type of the intersection

Y ∩Np ∩ ∂Bε(p) (5.5)

does not depend on the choice of the point p in X, the choice of the normal slice Np or the choice
of the radius of the ball Bε(p) for small enough ε > 0. The above intersection (5.5) is defined to
be the link of X in Y , denoted by linkY (X). For details, see [12, Section 6]. As an example see
Figure 2, where X is a one-dimensional strata and Y is the two-dimensional strata consisting of
4 sheets attached to X.

Ehrenborg, Goresky and Readdy provided a geometric source of Eulerian quasi-graded posets,
namely, those arising from Whitney stratified manifolds. See [12, Theorem 6.10].
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Figure 2: The link of the horizontal line X in the two-dimensional strata Y consists of 4 points.

Theorem 5.4 (Ehrenborg–Goresky–Readdy). Let M be a manifold whose boundary has a Whitney
stratification. Let T be the face poset of this stratification where the partial order relation is given
by (5.3). Let the rank function ρ and the weighted zeta function ζ be

ρ(x) =

{
dim(x) + 1 if x > 0̂,

0 if x = 0̂,
ζ(x, y) =

{
χ(linky(x)) if x > 0̂,

χ(y) if x = 0̂.

Then the quasi-graded face poset (T, ρ, ζ) is Eulerian.

We end this section with a result about stratifications.

Proposition 5.5. Let M be a manifold with a Whitney stratification Ω in its boundary. Assume
that there are two strata X and Y of the same dimension satisfying:

(i) for all strata V in Ω the condition X < V is equivalent to Y < V , and

(ii) for all strata V in Ω such that X < V , the two links linkV (X) and linkV (Y ) are homeomor-
phic.

Then
Ω′ = Ω− {X,Y } ∪ {X ∪ Y }

is also a Whitney stratification and their cd-indexes are equal:

Ψ(Ω) = Ψ(Ω′).

This result follows from Lemma 5.4 in [12], which shows that we can replace two elements in a
quasi-graded poset with their union if their up-sets and their weighted zeta functions agree.
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6 Coalgebraic techniques and the operator G

Following [13], on the algebra of non-commutative polynomials in the variables a and b we define
the coproduct ∆ : Z〈a,b〉 −→ Z〈a,b〉 ⊗ Z〈a,b〉 by

∆(u1u2 · · ·uk) =

k∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·uk,

where u1u2 · · ·uk is an ab-monomial of length k and extend ∆ by linearity. Note that ∆(1) = 0.
Observe that this coproduct satisfies the Newtonian condition:

∆(u · v) =
∑
u

u(1) ⊗ u(2) · v +
∑
v

u · v(1) ⊗ v(2). (6.1)

Next we have the following result; see [12, Theorem 2.5].

Theorem 6.1 (Ehrenborg–Goresky–Readdy). For a quasi-graded poset (P, ρ, ζ),

∆(Ψ(P, ρ, ζ)) =
∑

0̂<x<1̂

Ψ([0̂, x], ρ, ζ)⊗Ψ([x, 1̂], ρx, ζ),

where the rank function ρx is given by ρx(y) = ρ(y)− ρ(x).

This result can be stated as the ab-index is a coalgebra map. Namely, let C be the Z-module
generated by all isomorphism types of quasi-graded posets and extend the ab-index to be a lin-
ear map Ψ : C −→ Z〈a,b〉. Let C be a coalgebra by defining the coproduct by ∆(P, ρ, ζ) =∑

0̂<x<1̂([0̂, x], ρ, ζ) ⊗ ([x, 1̂], ρx, ζ). Theorem 6.1 now states ∆ ◦ Ψ = (Ψ ⊗ Ψ) ◦∆, that is, Ψ is a
coalgebra homomorphism.

We now introduce a number of operators on Z〈a,b〉 that will be essential to describe the cd-
index of manifold arrangements. The operators κ, η, ϕ and ω were first introduced in [4] when
studying flag vectors of oriented matroids.

Define the two algebra maps κ and λ such that κ(1) = λ(1) = 1 and

κ(a) = a− b, κ(b) = 0, λ(a) = 0, and λ(b) = a− b.

We use the notation λ to be consistent with the notation λ in [14].

Define η : Z〈a,b〉 −→ Z〈a,b〉 by

η(w) =

{
2 · (a− b)m+k if w = bm · ak,
0 otherwise.

Lemma 6.2. Let (P, ρ, ζ) be a quasi-graded poset where the weighted zeta function is the classical
zeta function ζ. Then the following identities hold:

κ(Ψ(P, ρ, ζ)) = (a− b)ρ(P )−1, (6.2)

λ(Ψ(P, ρ, ζ)) = (−1)ρ(P ) · µ(P ) · (a− b)ρ(P )−1, (6.3)

η(Ψ(P, ρ, ζ)) = Z(P, ρ, ζ) · (a− b)ρ(P )−1. (6.4)
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Proof. Equation (6.2) is a direct observation. See also [4, Equation (5)]. Equation (6.3) is a
reformulation of Hall’s formula for the Möbius function. Finally (6.4) follows from [4, Lemma 5.2
and Equation (6)]. Although this reference only proves this relation for classical graded posets, the
proof for quasi-graded posets carries through using the same techniques.

Define the operator ϕ as the sum
∑

k≥1 ϕk, where ϕk is defined by the k-ary coproduct

ϕk(w) =
∑
w

κ(w(1)) · b · η(w(2)) · b · · ·b · η(w(k)).

From [4, Lemmas 5.6 and 5.7] we have the following lemma for evaluating ϕ.

Lemma 6.3. Let v be an ab-polynomial without a constant term. Then ϕ(v · ab) = ϕ(v) · 2d.
Furthermore, let x be either a or b and assume that the monomial v ·x does not end with ab. Then
ϕ(v · x) = ϕ(v) · c.

Define the linear map ω : Z〈a,b〉 −→ Z〈c,d〉 by first defining ω on a monomial by replacing
each occurrence of ab by 2d and then replacing the remaining letters by c. Extend by linearity
to all ab-polynomials in Z〈a,b〉. As an example, ω(abba) = 2dc2. The ω map is equivalent to
Stembridge’s peak algebra map θ [33].

From [4, Proposition 5.5] we have:

Proposition 6.4. The two linear operators ϕ and ω agree on ab-monomials that begin with the
letter a, that is, ϕ(a · v) = ω(a · v).

Now define the operator G : Z〈a,b〉 −→ Z〈a,b〉 by the relation

G(w) = ϕ(w) · b +
∑
w

ϕ(w(1)) · b · λ(w(2)) · (a− b).

Applying this operator to the ab-index of a quasi-graded poset P whose weighted zeta function is
the zeta function, we have

G
(
Ψ(P )

)
= ϕ

(
Ψ(P )

)
· b +

∑
0̂<y<1̂

ϕ
(
Ψ([0̂, y])

)
· b · λ

(
Ψ([y, 1̂])

)
· (a− b). (6.5)

Lemma 6.5. For an ab-polynomial w we have

G(w · a) =
1

2
· ϕ(w · ab).

Proof. By the Newtonian condition (6.1) we have that ∆(w ·a) = w⊗1 +
∑

w w(1)⊗w(2) ·a. Hence
we have

G(w · a) = ϕ(w · a) · b + ϕ(w) · b · λ(1) · (a− b) +
∑
w

ϕ(w(1)) · b · λ(w(2) · a) · (a− b)

= ϕ(w) · c · b + ϕ(w) · b · (a− b)

= ϕ(w) · d
= 1/2 · ϕ(w · ab),
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where in the second step we used Lemma 6.3, λ(1) = 1 and λ(w(2) · a) = λ(w(2)) · λ(a) = 0, and in
the fourth step Lemma 6.3 was applied again.

Proposition 6.6. For any ab-polynomial v the operator G satisfies

G(1) = b, (6.6)

G(a · v) =
1

2
· ω(a · v · b). (6.7)

Proof. It is a straightforward verification that G(1) = b. Next we prove statement (6.7) by induc-
tion. The induction basis is v = 1, which follows from G(a) = ϕ(a) · b + ϕ(1) · b · λ(1) · (a− b) =
c · b + b · (a− b) = d = 1/2 ·ϕ(ab). Assume now that the statement holds for v and let w = a · v.
By Lemma 6.5 we know it is true for v ·a. The last case to consider is v ·b and again use w = a · v.
The Newtonian condition (6.1) implies ∆(w · b) = w ⊗ 1 +

∑
w w(1) ⊗ w(2) · b. Now

G(w · b) = ϕ(w · b) · b + ϕ(w) · b · λ(1) · (a− b) +
∑
w

ϕ(w(1)) · b · λ(w(2) · b) · (a− b)

= ϕ(w · b) · b +
(
ϕ(w) · b +

∑
w

ϕ(w(1)) · b · λ(w(2)) · (a− b)
)
· (a− b)

= ϕ(w · b) · b + G(w) · (a− b)

= ϕ(w · b) · b + 1/2 · ϕ(w · b) · (a− b)

= 1/2 · ϕ(w · b) · c
= 1/2 · ϕ(w · bb),

where the fourth step is the induction hypothesis and the sixth step is Lemma 6.3, completing the
induction.

7 The induced stratification

Let M be an n-dimensional manifold and let {Ni}mi=1 be a manifold arrangement in the boundary
of M . The arrangement induces a Whitney stratification of the boundary of M as follows. Recall
that for an intersection x =

⋂
i∈I Ni we let x◦ be all points in x not contained in any submanifold

of x; see (4.1). Now the induced subdivision T is the collection of all connected components of(⋂
i∈I Ni

)◦
, where I ranges over all index sets, together with the empty strata ∅, and the manifold M

as the maximal strata. Observe that the empty index set yields the connected components of (∂M)◦.

Proposition 7.1. The stratification T is a Whitney stratification.

Proof. Pick two strata X and Y from T where X <T Y and a point x in X. Since the clean
intersection property holds at the point x we can choose a local coordinate system around x such
that the two strata X and Y are locally straight in a neighborhood U around x, that is, for any
point p close enough to x the tangent planes TpX, respectively TpY , are independent of the point p.
Let yi ∈ Y be any sequence of points converging to the point x. Without loss of generality, we may
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Figure 3: The face poset T of the induced subdivision and the quasi-graded poset Q of Example 7.2.

assume that yi lies in the neighborhood U . Since the tangent planes TyiY are all the same, they
are in fact equal to the limiting plane τ . Hence Whitney’s condition (A) holds: TxX ⊆ TxY = τ .
Similarly, let xi ∈ X be any sequence of points converging to the point x. Again, we may assume
that xi ∈ U . Now all the lines `i = xiyi lie in the plane τ so that the limiting line ` also lies in τ ,
and thus Whitney’s condition (B) holds.

Example 7.2. Consider the subspace arrangement in R3 consisting of the two planes x = 0
and y = 0, and the line x = y = z. Intersect this arrangement with S2 to obtain a spherical
arrangement consisting of two 1-dimensional spheres and one 0-dimensional sphere. The face poset
of the induced stratification of the sphere consists of four points±(0, 0, 1) and±(1/

√
3, 1/
√

3, 1/
√

3);
four open edges (1-dimensional strata) each emanating from (0, 0, 1) to (0, 0,−1); and finally, four
2-dimensional strata where two of the strata are discs (the x and y coordinates have different signs)
and the other two strata are punctured discs (the x and y coordinates have the same sign). See
Figure 3 for the face poset T .

Theorem 7.3. Let M be an n-dimensional manifold. Let {Ni}mi=1 be a manifold arrangement in
the boundary ∂M with an intersection poset P . Let T be the induced Whitney stratification of M .
Then the reverse of the cd-index of T is given by

Ψ(T )∗ = χ(M) ·

{
(c2 − 2d)n/2 if n is even,

c · (c2 − 2d)(n−1)/2 if n is odd,

+
∑

x∈P,x>0̂
dim(x) even

1

2
· ω
(
a ·Ψ([0̂, x]) · b

)
· (c2 − 2d)dim(x)/2 · χ(x).

Before proving Theorem 7.3, we first introduce a quasi-graded poset Q that is different than
the quasi-graded poset T . This new quasi-graded poset will be smaller than T . However, it will
have the same cd-index as T . Let P̂ = P ∪ {−̂1} be the intersection poset with a new minimal
element −̂1 adjoined.

Define Q to be the poset
Q = {x◦ : x ∈ P} ∪ {M}
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where the partial order is x◦ ≤ y◦ if x ⊆ y. Observe that this condition is equivalent to x◦ ⊆ y◦

since y◦ = y. This is the partial order of the face poset of the induced stratification where the
strata are of the form x◦. Furthermore, note that M is the maximal element and it covers the
element (∂M)◦, which is the unique element of rank n.

Define the rank function ρQ by

ρQ(x◦) =

{
0 if x◦ = 0̂,

dim(x◦) + 1 otherwise,

and the weighted zeta function ζQ by

ζQ(x◦, y◦) =

{
χ(y◦) if 0̂ = x◦,

χ(linky◦(x
◦)) if 0̂ < x◦.

As a poset Q is the dual poset of P̂ via the map ψ(x◦) = x and ψ(M) = −̂1.

There is a natural order-preserving map z from the quasi-graded face poset T to the poset Q.
Namely, for an element x in T let z(x) be the rank-wise smallest element in the poset Q containing x.
Observe the map z also preserves the rank function, that is, ρT (x) = ρQ(z(x)). As a side comment,
the reason why this map is called z stems from oriented matroid theory, as it selects the coordinates
that are equal to zero in the covectors of the oriented matroid [5, Section 4.6].

The same argument as Proposition 7.1 yields:

Proposition 7.4. The stratification Q is a Whitney stratification.

Since the links of a Whitney stratification are well-defined, we have the next corollary.

Corollary 7.5. Let x and y be two manifolds in the intersection poset such that x ⊆ y. Further-
more, let p and q be two points in x◦. Let Np and Nq be the normal slices to x at p, respectively
at q. Then the two spaces

y◦ ∩Np ∩ ∂Bε(p) and y◦ ∩Nq ∩ ∂Bε(q) (7.1)

are homeomorphic for small enough ε > 0.

Proof. The two spaces in (7.1) are both homeomorphic to linky(x).

Proposition 7.6. The cd-indexes of the two quasi-graded posets T and Q are equal, that is,
Ψ(T, ρT , ζT ) = Ψ(Q, ρQ, ζQ).

Proof. Choose a linear extension of the poset Q, that is, Q = {x1, . . . , xk} such that xi ≤Q xj
implies i ≤ j. Note that x1 = 0̂ and xk = 1̂ = M . Starting with xk−1 select two elements u
and v such that ψ(z(u)) = ψ(z(v)) = xk−1. By Corollary 7.5, the conditions of Proposition 5.5 are
satisfied and hence we can replace u and v by their union u ∪ v without changing the cd-index.
Repeat this operation until there are no more such elements. Continue with elements mapping to
xk−2 and work towards the strata x2. Proposition 5.5 guarantees that at every step the cd-index
does not change. The end result is the stratification Q, proving the proposition.
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Continuation of Example 7.2. The weighted zeta function of the quasi-graded poset T takes
the value 1 everywhere, except for the four values ζT (0̂, A) = ζT (0̂, B) = ζT (a,A) = ζT (b, B) = 0.

Similarly, the non 1-values of the weighted zeta function for the quasi-graded poset Q are given
by ζQ(0̂, c) = ζQ(0̂, d) = ζQ(0̂, e) = ζQ(0̂, f) = ζQ(0̂, C) = ζQ(c, e) = ζQ(c, f) = 2, ζQ(c, C) = 4,

ζQ(d,C) = 0 and ζQ(e, C) = ζQ(f, C) = 2. Observe that each of the five strata c, d, e, f and C
are disconnected.

In both cases we obtain Ψ(T ) = Ψ(Q) = c3 + 2 · dc.

We now explicitly describe ζQ in terms of the invariants Z and ZM .

Proposition 7.7. The weighted zeta function ζQ is given by

ζQ(y◦, 1̂) = 1 for −̂1 <
P̂
y <

P̂
1̂,

ζQ(y◦, x◦) = Z([x, y], ρ
P̂
, ζ) for −̂1 <

P̂
x ≤

P̂
y <

P̂
1̂,

ζQ(0̂, x◦) = ZM ([x, 1̂], ρ
P̂
, ζ;χ) for −̂1 <

P̂
x <

P̂
1̂,

ζQ(0̂, 1̂) = χ(M).

Proof. The first and fourth equations are direct. The second equation follows from

ζQ(y◦, x◦) = χ(linkx◦(y
◦)) = Z([x, y], ρ

P̂
, ζ),

where the second equality is by Theorem 4.3. Similarly, we have

ζQ(0̂, x◦) = χ(x◦) = ZM ([x, 1̂], ρ
P̂
, ζ;χ).

We are now positioned to prove our main result.

Proof of Theorem 7.3. Throughout this proof we suppress the dependency on the rank function ρ
and the zeta function ζ in our notation. By summing over all chains c in the poset P̂ we can
compute the ab-index of Q and hence of T . However, we prefer to compute the reverse ab-indexes,
that is,

Ψ(T )∗ = Ψ(Q)∗ = χ(M) · (a− b)n+1

+
∑
c

Z([x1, x2]) · · ·Z([xk−2, xk−1]) · ZM ([xk−1, xk];χ) · wt(c), (7.2)

where the sum is over all chains c = {−̂1 = x0 < x1 < · · · < xk = 1̂} of length k ≥ 2 in P̂ .

Recall that the operator η satisfies the relation (6.4). Similarly, define ηM such that

ηM
(
Ψ(P )

)
= ZM (P ;χ) · (a− b)ρ(P )−1,
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where we suppress the dependence of ηM (Ψ(P )) on the Euler characteristic of the elements in P .
By expanding equation (5.1) we can rewrite equation (7.2) as

Ψ(T )∗ = χ(M) · (a− b)n+1

+
∑
c

κ
(
Ψ([x0, x1])

)
· b · η

(
Ψ([x1, x2])

)
· b · · ·b · η

(
Ψ([xk−2, xk−1])

)
· b · ηM

(
Ψ([xk−1, xk])

)
(7.3)

We split the sum by first summing over the element y = xk−1 and then over all chains c′ in the
interval [−̂1, y]. By the definition of the operator ϕ and the fact that the ab-index is a coalgebra
homeomorphism, we then have

Ψ(T )∗ = χ(M) · (a− b)n+1 +
∑

−̂1<y<1̂

ϕ
(
Ψ([−̂1, y])

)
· b · ηM

(
Ψ([y, 1̂])

)
. (7.4)

Now apply ηM to the interval [y, 1̂]. We have

ηM
(
Ψ([y, 1̂])

)
= ZM ([y, 1̂];χ) · (a− b)ρ(y,1̂)−1

=
∑
y≤x≤1̂

(−1)ρ(y,x) · µ(y, x) · (a− b)ρ(y,x)−1 · χ(x) · (a− b)ρ(x,1̂)

= χ(y) · (a− b)ρ(y,1̂)−1 +
∑
y<x<1̂

λ
(
Ψ([y, x])

)
· χ(x) · (a− b)ρ(x,1̂), (7.5)

where the term x = 1̂ vanished since the maximal element 1̂ is the empty set with χ(1̂) = 0.
Substituting equation (7.5) into equation (7.4) we have

Ψ(T )∗ = χ(M) · (a− b)n+1 +
∑

−̂1<y<1̂

ϕ
(
Ψ([−̂1, y])

)
· b · χ(y) · (a− b)ρ(y,1̂)−1

+
∑

−̂1<y<1̂

∑
y<x<1̂

ϕ
(
Ψ([−̂1, y])

)
· b · λ

(
Ψ([y, x])

)
· χ(x) · (a− b)ρ(x,1̂)

= χ(M) · (a− b)n+1 +
∑

−̂1<x<1̂

ϕ
(
Ψ([−̂1, x])

)
· b · χ(x) · (a− b)ρ(x,1̂)−1

+
∑

−̂1<x<1̂

∑
−̂1<y<x

ϕ
(
Ψ([−̂1, y])

)
· b · λ

(
Ψ([y, x])

)
· χ(x) · (a− b)ρ(x,1̂)

= χ(M) · (a− b)n+1

+
∑

−̂1<x<1̂

(
ϕ
(
Ψ([−̂1, x])

)
· b +

∑
−̂1<y<x

ϕ
(
Ψ([−̂1, y])

)
· b · λ

(
Ψ([y, x])

)
· (a− b)

)
· χ(x) · (a− b)ρ(x,1̂)−1

= χ(M) · (a− b)n+1 +
∑

−̂1<x<1̂

G
(
Ψ([−̂1, x])

)
· χ(x) · (a− b)ρ(x,1̂)−1,

where in the second step we changed the variable in the second term and switched the order of
summation in the third term. The last step was to apply the fact that the ab-index is a coalgebra
map and the definition of the operator G to Ψ([−̂1, x]); see equation (6.5).

18



From the last sum we break out the case when x = 0̂, that is, the boundary of M . Recall that
G(1) = b. For x > 0̂ we use that Ψ([−̂1, x]) = a ·Ψ([0̂, x]) and we can apply Proposition 6.6.

Ψ(T )∗ = χ(M) · (a− b)n+1 + χ(∂M) · b · (a− b)n

+
∑

0̂<x<1̂

1/2 · ω
(
a ·Ψ([0̂, x]) · b

)
· χ(x) · (a− b)ρ(x,1̂)−1,

The result follows now by observing χ(∂M) =
(
1− (−1)dim(M)

)
· χ(M), the Euler characteristic of

an odd dimensional manifold x is 0 (since x has no boundary), and that (a− b)2 = c2 − 2d.

Similar to the c-2d-index in [4] we have the next result.

Corollary 7.8. Let M be a manifold and {Ni}mi=1 be a manifold arrangement in the boundary
of M , that is, ∂M . Let T be the induced Whitney stratification of M . Let w be a cd-monomial
containing k d’s. Then the coefficient of w in the cd-index Ψ(T ) is divisible by 2k−1.

8 Spherical and toric arrangements

We now turn our attention to consequences of the main result. As mentioned in the introduc-
tion, we consider two important cases that have been studied earlier, namely spherical and toric
arrangements. In both cases, the results have been expanded.

8.1 Spherical arrangements

We now extend the original results for spherical arrangements where each sphere has codimension 1
to arrangements without this restriction. By a k-dimensional sphere we mean a manifold homeo-
morphic to the k-dimensional unit sphere {(x1, . . . , xk+1) ∈ Rk+1 : x21 + · · ·+ x2k+1 = 1}. Define a
spherical arrangement to be a collection of spheres {Ni}mi=1 on the boundary of a ball such that the
intersection

⋂
i∈I Ni is a disjoint union of spheres for all index sets I ⊆ {1, . . . ,m}. An example of

a spherical arrangement is to intersect an arrangement of affine subspaces in Euclidean space with
a sphere of large enough radius. Example 3.4, where two 2-dimensional spheres intersect in two
points and a circle, is also a spherical arrangement.

Observe that we require every non-empty element of an intersection poset to be a sphere. The
next result not only extends the original result in [4, Theorem 3.1], but also [15, Theorem 4.10].

Theorem 8.1. Let {Ni}mi=1 be a spherical arrangement in the boundary of an n-dimensional ball,
with (P, ρ, ζ) as a quasi-graded intersection poset of the arrangement. Let T be the induced Whitney
stratification. Then the cd-index of T is given by

Ψ(T ) = ω
(
a ·Ψ(P, ρ, ζ)

)∗
.
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Proof. Observe that the Zaslavsky invariant and the manifold Zaslavsky invariant agree for a spher-
ical arrangements. That is, for an interval [y, 1̂] in P we have

ZM ([y, 1̂]) =
∑
y≤x≤1̂

(−1)ρ(y,x) · µ(y, x) ·
(

1 + (−1)dim(x)
)

=
∑
y≤x≤1̂

(−1)ρ(y,x) · µ(y, x)

= Z([y, 1̂]),

where the equality in the second step follows from the fact the product (−1)ρ(y,x) · (−1)dim(x) does
not depend on the element x and thus the term

∑
y≤x≤1̂ µ(y, x) vanishes. Hence the two operators

ηM and η agree, and equation (7.3) reduces to Ψ(T )∗ = ϕ
(
Ψ(P̂ )

)
= ω

(
a ·Ψ(P )

)
.

Continuation of Example 7.2. The spherical intersection poset P has the flag f -vector f(∅) = 1
and f({1}) = f({2}) = f({1, 2}) = 2. Hence the flag h-vector is given by h(∅) = h({1}) = h({2}) =
1 and h({1, 2}) = −1. Thus Ψ(P ) = aa + ba + ab−bb and Ψ(T ) = ω(a · (aa + ba + ab−bb))∗ =
c3 + 2 · dc.

Example 8.2. Let k be a non-negative integer. Let c and p be positive real numbers such that
c < p and c + p < π/2. On the 2-dimensional unit sphere S2 consider the following two closed
curves, which intersect each other in 2 · k points:

φ = c+ p · sin(k · θ) and φ = −c− p · sin(k · θ).

Observe that the arrangement of these two curves on the sphere S2 is spherical. Furthermore, there
are (2k − 1)!! = (2k − 1) · (2k − 3) · · · 1 ways to divide the points into k zero-dimensional spheres.
However, all intersection posets are isomorphic. The spherical intersection poset has rank 3 and
consists of 2 atoms and k coatoms, where each coatom covers each atom. The ab-index is given by
Ψ(P ) = (a + b) · (a + (k− 1) ·b). The cd-index of the induced subdivision of the sphere is given by

Ψ(T ) = ω(a · (a + b) · (a + (k − 1) · b))∗

= ω(aaa)∗ + (k − 1) · ω(aab)∗ + ω(ab · (a + (k − 1) · b))∗

= c3 + 2(k − 1) · dc + 2k · cd.

This can be observed directly in the case k ≥ 1 by noting that the induced subdivision consists of
2k vertices, 2k digons and two 2k-gons. Note that the calculation also holds for the case k = 0.

Example 8.3. Given a complete flag of subspaces V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 in Rn such that
dim(Vi) = i, consider the spherical arrangement in the (n − 1)-dimensional sphere Sn−1 given
by {Vi∩Sn−1}1≤i≤n−1. The intersection poset is a chain of length n, and its ab-index is an−1. The
induced stratification consists of two cells for each dimension and cells of different dimensions are
comparable. Hence the face poset is the butterfly poset of rank n+ 1, which has the cd-index cn.
This checks with ω(a · an−1) = cn.

Lastly, we observe that the proof of Theorem 8.1 only used that the Euler characteristic of each
manifold was that of a sphere. Hence we have the following direct extension.
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Theorem 8.4. Let M be a manifold with Euler characteristic 1. Let {Ni}mi=1 be a manifold
arrangement with an intersection poset P such that each non-empty element x of P satisfies
χ(x) = 1 + (−1)dim(x). Then the cd-index of the induced Whitney stratification T is given by

Ψ(T ) = ω
(
a ·Ψ(P, ρ, ζ)

)∗
.

8.2 Toric arrangements

We call an affine subspace V in Rn rational if in the linear system that determines V = {~x : A·~x = ~b}
the matrix A has rational entries. Observe that under the quotient map Rn −→ Rn/Zn = Tn a
rational affine subspace is sent to a subtorus of Tn. Call an affine subspace arrangement {Vi}mi=1

in Rn rational if each subspace is rational. A toric arrangement is the image of a rational affine
subspace arrangement under the quotient map.

Define the map H ′ : Z〈a,b〉 −→ Z〈a,b〉 by H ′(1) = 0 and H ′(u · a) = H ′(u · b) = u. Similar
to [4, Proof of Proposition 8.2] (see also [15, Proposition 3.14]) we have

H ′
(
Ψ(P, ρ, ζ)

)
=

∑
x coatom of P

Ψ([0̂, x], ρ, ζ). (8.1)

Theorem 7.3 implies the following.

Theorem 8.5. The cd-index induced by a toric arrangement on the n-dimensional torus Tn, for
n ≥ 2, is given by

Ψ(T ) =
1

2
· ω
(
a ·H ′

(
Ψ(P, ρ, ζ)

)
· b
)∗
,

where (P, ρ, ζ) is a quasi-graded intersection poset of the toric arrangement.

Proof. Let B2 denote the two-dimensional ball, that is, a disc. Observe that the n-dimensional
torus Tn = T 1 × Tn−1 is the boundary of M = B2 × Tn−1. Also note that the Euler characteristic
is given by χ(M) = 0 for n ≥ 2. Hence the first term of Theorem 7.3 vanishes. Next, observe
that the only elements in the intersection poset with a non-zero Euler characteristic are the points.
Hence the sum in Theorem 7.3 reduces to

Ψ(T ) =
1

2
·

∑
x coatom of P

ω
(
a ·Ψ([0̂, x]) · b

)∗
,

that is, a sum over all coatoms in the intersection poset P . Since w 7−→ ω(a · w · b) is linear, by
equation (8.1) the sum reduces further to the statement of the theorem.

Remark 8.6. Theorem 8.5 strengthens [15, Theorem 3.12] in a number of directions. First, the
previous result was only proved for an arrangement of codimension one tori, that is, the image of a
rational (affine) hyperplane arrangement. This is no longer the case. Secondly, [15] required that
the toric arrangement induced a regular subdivision of the torus. Again, we no longer require the
regularity condition. Lastly, the previous result computes the ab-index of the face poset. This is
not an Eulerian poset. However, it is almost an Eulerian quasi-graded poset with the weighted
zeta function given by the classical zeta function ζ. We only have to change the value of ζ(0̂, 1̂) to
χ(M) = 0 to make it Eulerian. This explains why the earlier result in [15] had an extra (a−b)n+1

term.
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Similar to Example 8.3, we have a toric analogue.

Example 8.7. Let V0 ⊆ V1 ⊆ · · · ⊆ Vn−1 be a complete flag of rational affine subspaces in Rn such
that dim(Vi) = i. Consider the toric arrangement obtained by the quotient map. The intersection
poset is a chain of length n+ 1 whose ab-index is an. Hence the cd-index of the face poset is given
by 1/2 · ω(a · an−1 · b)∗ = dcn−1.

9 Concluding remarks

The next natural step is to ask for inequalities for the cd-coefficients of arrangements. For the
classical case of central hyperplane arrangements, equivalently for zonotopes, the cd-index is min-
imized on the n-dimensional cube; see [4, Corollaries 7.5 and 7.6]. This was continued by Nyman
and Swartz [29] in special cases. Ehrenborg’s lifting technique for polytopes [10] was extended to
zonotopes; see [11]. However, the question of determining inequalities is wide open for general
manifold arrangements. As a first step one should consider arrangements with codimension one
submanifolds.

For results concerning inequalities and unimodality of the f -vector of zonotopes, see [17, 18, 19].
The minimal and maximal number of connected components of arrangements has been studied by
Shnurnikov [30] in the cases of Euclidean, projective and Lobachevskĭı spaces. Moci [27] introduced
a generalized Tutte polynomial for spherical and toric arrangements. It would be interesting to
develop a similar polynomial for manifold arrangements. Is there a natural subclass of manifold
arrangements where this would be successful?
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