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Abstract

A cubical analogue of Stanley’s theorem expressing the cd-index of an Eulerian simplicial poset
in terms of its h-vector is presented. This result implies that the cd-index conjecture for Gorenstein∗

cubical posets follows from Ron Adin’s conjecture on the non-negativity of his cubical h-vector for
Cohen-Macaulay cubical posets. For cubical spheres the standard definition of shelling is shown to
be equivalent to the spherical one. A cubical analogue of Stanley’s conjecture about the connection
between the cd-index of semisuspended simplicial shelling components and the reduced variation
polynomials of certain subclasses of André permutations is established. The notion of signed André
permutation used in this result is a common generalization of two earlier definitions of signed André
permutations.

Introduction

In recent years many efforts were made to describe the flag f -vector (the array giving the numbers of
flags) of Eulerian partially ordered sets. Bayer and Billera characterized in [5] all linear inequalities
which are satisfied by the flag f -vector of all Eulerian partially ordered sets. Fine used this information
to introduce a non-commutative polynomial, the cd-index, to efficiently encode the flag f -vector of an
Eulerian poset. He also conjectured that for the face lattice of a convex polytope, the cd-index has
non-negative coefficients.

Fine’s conjecture was proved by Stanley in [26] for spherically shellable Eulerian posets, a class
properly containing the face lattices of all convex polytopes. Stanley also made the conjecture [26,
Conjecture 2.1] that every Eulerian poset whose order complex has the Cohen-Macaulay property, i.e.,
every Gorenstein∗ poset, has a non-negative cd-index. He showed that this conjecture, if true, gives
a full description of all linear inequalities holding for the cd-indices of all Gorenstein∗ posets.
∗This research began when both authors were postdoctoral fellows at LACIM, Université du Québec à Montréal.
†Appeared in Annals of Combinatorics 4 (2000), 199–226.
‡On leave from the Mathematical Institute of the Hungarian Academy of Sciences. Partially supported by Hungarian

National Foundation for Scientific Research grant no. F 023436

1



A strengthened version of this conjecture appears in [27, Conjecture 2.7], stating that the cd-index
of a Gorenstein∗ poset is greater than or equal to the cd-index of the Boolean algebra of the same
rank. This strengthening was proved for polytopes by Billera and Ehrenborg [7]. Both conjectures
remain open for Gorenstein∗ posets in general.

Stanley verified [26, Conjecture 2.1] for every Eulerian simplicial poset, by expressing its cd-
index in terms of its h-vector and non-negative cd-polynomials. He also conjectured a combinatorial
description of the non-negative coefficients occurring in his formula. This conjecture was proved by
Hetyei in [19].

In this paper we generalize Stanley’s simplicial results to cubical posets. The most plausible ana-
logue of the simplicial h-vector for Eulerian cubical posets turns out to be identical to the normalized
version of a cubical h-vector suggested by Adin in [1, 2]. Thus we obtain that Adin’s conjecture
about the non-negativity of his cubical h-vector for Cohen-Macaulay cubical posets implies Stanley’s
conjecture [26, Conjecture 2.1] for Gorenstein∗ cubical posets.

Two other h-vectors defined for cubical complexes have been studied before. First, the toric
h-vector defined by Stanley for Eulerian posets in general [24] and studied by Babson, Billera and
Chan [3, 12]. Second, the h-vector of the Stanley ring of cubical complexes introduced in [17, 18].
Unfortunately, none of them have been useful when proving nontrivial inequalities about the f -vector of
cubical complexes. Our main result indicates that Adin’s cubical h-vector might be a good candidate
for this purpose. Inspired by this finding, the second author proved later in [20] that among all
reasonably definable cubical h-vectors, Adin’s h-vector is the smallest. More precisely, if an invariant I
of d-dimensional cubical complexes depends linearly on the face numbers, is non-negative on the face
complex of a d-cube, and changes by a non-negative number when a new cell is attached in a shelling,
then this invariant is a non-negative linear combination of the entries in Adin’s h-vector.

In Section 1 we recall the definition and fundamental properties of the cd-index of a graded Eulerian
poset, with a special focus on C-shellable CW-spheres. We draw attention to a lemma by Stanley [26,
Lemma 2.1] which allows us to greatly simplify the calculation of the change in the cd-index of a
CW-sphere when we subdivide a facet into two facets.

In Section 2 we specialize the results of Section 1 to shellable cubical complexes. We show that for
cubical spheres the usual notion of shelling (which we call C-shelling, following Stanley in [26]) and
the notion of S-shelling or spherical shelling (also introduced in [26]) coincide. Using a consequence
of [26, Lemma 2.1], we obtain a formula for the cd-index of a shellable cubical sphere.

In Section 3 we use [26, Lemma 2.1] to establish linear relations between the cd-indices of semi-
suspended cubical shelling components. These relations allow us to express the cd-index of a shellable
cubical sphere in terms of an h-vector which is an invertible linear function of the f -vector. This
h-vector turns out to be the normalized version of the cubical h-vector suggested by Adin in [2]. The
expression obtained is a cubical analogue of Stanley’s theorem [26, Theorem 3.1] and also exhibits the
behavior that each hi is multiplied by a cd-polynomial with non-negative coefficients. Adin has asked
whether the cubical h-vector of a Cohen-Macaulay cubical complex is non-negative. An affirmative
answer to his question would imply a new special case of Stanley’s conjecture [26, Conjecture 2.1]
about the non-negativity of the cd-index of Gorenstein∗ posets.
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In Section 4 we give recursion formulas for the cd-indices of both semisuspended simplicial and
cubical shelling components. These formulas will be useful in proving the results of Section 5.

Finally, in Section 5 we express the cd-index of the semisuspended cubical shelling components in
terms of reduced variation polynomials of signed augmented André∗ permutations. Unsigned André∗

permutations may be obtained from André permutations by reversing the linear order of the letters
and reading the permutation backwards. As first observed by Ehrenborg and Readdy in [13], this small
twist allows one to handle the signed generalizations more easily. Our signed André∗ permutations
generalize both the signed André permutations, introduced by Purtill in [22] and studied in greater
generality by Ehrenborg and Readdy in [13], and the signed André-permutations introduced by Hetyei
in [19]. We prove not only a signed analogue of Stanley’s conjecture [26, Conjecture 3.1], but as an
auxiliary result we also obtain a new description of the cd-index of semisuspended simplicial shelling
components.

1 The cd-index and shellings

Let P be a graded poset of rank n + 1, that is, P is ranked with rank function ρ, and P has a
distinguished minimum element 0̂ and a distinguished maximum element 1̂. The flag f-vector (fS :
S ⊆ {1, 2, . . . , n}) is defined by

fS
def=
∣∣∣{{0̂ < x1 < . . . < xk < 1̂} ⊆ P : {ρ(x1), . . . , ρ(xk)} = S

}∣∣∣ ,
and the flag h-vector (also called the beta-invariant) is defined by the equation

hS
def=

∑
T⊆S

(−1)|S\T | · fT .

The ab-index ΨP (a,b) = Ψ(P ) of a poset P is the following polynomial in the non-commuting
variables a and b:

ΨP (a,b) =
∑

S⊆{1,2,...,n}
hS · uS , (1.1)

where uS is the monomial u1 · · ·un satisfying

ui =

{
a if i 6∈ S,
b if i ∈ S.

A poset P is Eulerian if the Möbius function of any interval [x, y] is given by µ(x, y) = (−1)ρ(y)−ρ(x).
Fine observed (see Bayer and Klapper’s paper [6]) that the ab-index of an Eulerian poset can be written
uniquely as a non-commutative polynomial in the variables c def= a + b and d def= ab + ba. For an
inductive proof of this fact, see Stanley [26]. In this case we call ΨP (a,b) = ΦP (c,d) = Φ(P ) the
cd-index of the Eulerian poset P .

Stanley [26] introduced the polynomial encoding the flag f -vector ΥP (a,b) def=
∑
S⊆{1,...,n} fS · uS

and he observed that

ΨP (a,b) = ΥP (a− b,b) and ΥP (a,b) = ΨP (a + b,b). (1.2)
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Definition 1.1 Let P be an Eulerian poset of rank n+1. To every chain c = {0̂ < x1 < · · · < xk < 1̂}
in P we associate a weight w(c) def= z1 · · · zn, where

zi =

{
b if i ∈ {ρ(x1), . . . , ρ(xk)},

a− b otherwise.

Note that the chain {0̂ < 1̂} gets the weight (a − b)n. By the first identity in (1.2), the ab-index
ΨP (a,b) is the sum of the weights of all chains in P :

Ψ(P ) = ΨP (a,b) =
∑
c

w(c), (1.3)

where c ranges over all chains c = {0̂ < x1 < · · · < xk < 1̂} in the poset P .

A poset P is called near-Eulerian if it may be obtained from an Eulerian poset Σ̃P , called the
semisuspension of P , by removing one coatom. The poset Σ̃P may be uniquely reconstructed from
P by adding a coatom x which covers all y ∈ P for which [y, 1̂] is the three element chain. By [23,
Proposition 3.14.5] the Möbius function of P is equal, up to a certain sign, to the Möbius function of
(Σ̃P \P )∪{0̂, 1̂}. This complementary poset is a chain of length two, which has Möbius function equal
to 0. Hence the Möbius function of a near-Eulerian poset P is equal to zero. For more information
and extended bibliography on Eulerian posets in general, see Stanley’s survey [27].

The aim of this paper is to generalize Stanley’s results about Eulerian simplicial posets to the
cubical case. Originally, simplicial and cubical posets arose as generalizations of simplicial and cubical
complexes, which we now define.

Definition 1.2 A simplicial complex4 is a family of finite sets (called faces) on a vertex set V closed
under inclusion such that for each vertex v ∈ V we have {v} ∈ 4. A cubical complex C is a family of
finite sets (called faces) on a vertex set V closed under intersection such that {v} ∈ V for all v ∈ V
and for every face σ ∈ C the interval [∅, σ] is isomorphic to the lattice of faces of a cube.

Simplicial and cubical posets may be intuitively regarded as generalized simplicial respectively
cubical complexes whose faces are allowed to intersect in any subcomplex of their boundaries, rather
than just a single face; see [25]. Hence a simplicial (respectively cubical) poset naturally has a distin-
guished minimum element 0̂ (corresponding to the empty face), and for every element x of a simplicial
(respectively cubical) poset the interval [0̂, x] is a Boolean algebra (respectively the face lattice of a
cube). On the other hand, the existence of a maximum element 1̂ is not required, since the highest
dimensional faces (facets) of a simplicial or cubical complex need not be of the same dimension. If
the complex is homeomorphic to a sphere (for instance, we are dealing with a simplicial or cubical
polytope), it is natural to introduce a maximum element 1̂ representing the “largest face” which is
not necessarily a simplex or a cube anymore.

Based on this intuition, Stanley [26] defined an Eulerian simplicial poset as a graded poset for
which for which [0̂, x] is a Boolean algebra whenever x < 1̂. We extend this definition to all graded
simplicial or cubical posets as follows.
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Definition 1.3 A graded poset P is simplicial, respectively cubical, if for every x ∈ P \ {1̂}, the
interval [0̂, x] is a Boolean algebra, respectively the face lattice of a cube.

Both simplicial and cubical complexes may be realized as regular CW-complexes. We call a poset P
with 0̂ a CW-poset when for all x > 0̂ in P the geometric realization |(0̂, x)| of the open interval (0̂, x)
is homeomorphic to a sphere. By [10], P is a CW-poset if and only if it is the face poset P (Ω) of
a regular CW-complex Ω. Following Stanley in [26], we use P1(Ω) to denote the face poset P (Ω)
with 1̂ adjoined. We will denote the closure of a cell σ by σ or by cl(σ). If Ω is homeomorphic to
a sphere then P1(Ω) is Eulerian, while if Ω is homeomorphic to a ball then P1(Ω) is near-Eulerian.
For a regular CW-ball Ω the semisuspension Σ̃P1(Ω) of P1(Ω) is of the form P1(Σ̃Ω) where Σ̃Ω is the
regular CW-sphere obtained from Ω by adding an extra facet, the boundary of which is identified with
the boundary ∂Ω of Ω.

Stanley observed the following; see [26, Lemma 2.1]. Let Ω be an n-dimensional CW-sphere, and
σ an (open) facet of Ω. Let Ω′ be obtained from Ω by subdividing σ into a regular CW-complex with
two facets σ1 and σ2 such that ∂σ remains the same and σ1 ∩ σ2 is a regular (n − 1)-dimensional
CW -ball Γ. Then we have

Φ(P1(Ω′)) − Φ(P1(Ω)) = Φ(P1(Σ̃Γ)) · c − Φ(P1(∂Γ)) · (c2 − d). (1.4)

In particular, if we take another n-dimensional CW-sphere and subdivide it isomorphically, the cd-
index will change by the same amount, as described in the following lemma.

Lemma 1.4 Let Ω1 and Ω2 be n-dimensional CW-spheres. Assume that we subdivide a facet σi of
Ωi (i = 1, 2) into two facets σi1 and σi2 such that ∂(σi) is unchanged and cl

(
σi1
)
∩ cl

(
σi2
)

is a regular
(n− 1)-dimensional CW -ball Γi. Then P1(Γ1) = P1(Γ2) and P1(∂Γ1) = P1(∂Γ2) imply

Φ(P1(Ω′1)) − Φ(P1(Ω1)) = Φ(P1(Ω′2)) − Φ(P1(Ω2)).

Fine [6, Conjecture 3] conjectured that the cd-index of the face lattice of a convex polytope is
non-negative. Stanley proved this in greater generality [26, Theorem 2.2] for spherically shellable, or
S–shellable, regular CW-spheres.

Definition 1.5 Let Ω be an n-dimensional Eulerian regular CW-complex. A complex Ω or its face
poset P1(Ω) is called spherically shellable (or S–shellable) if either Ω = {∅} (and so P1(Ω) is the
two-element chain {0̂ < 1̂}), or else we can linearly order the facets (open n-cells) F1, F2, . . . , Fm of
Ω such that for all 1 ≤ i ≤ m the following two conditions hold:

(S-a) ∂F1 is S–shellable of dimension n− 1.

(S-b) For 2 ≤ i ≤ m− 1, let Γi
def= cl[∂Fi − ((F1 ∪ · · · ∪ Fi−1) ∩ Fi)]. Then P1(Γi) is near-Eulerian of

dimension n − 1, and the semisuspension Σ̃Γi is S–shellable, with the first facet of the shelling
being the facet τ = τi adjoined to Γi to obtain Σ̃Γi.
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As a consequence of Lemma 1.4, the cd-index of an S–shellable regular CW-sphere may be com-
puted from just knowing ∂F1 and the complexes Γi.

The definition of S–shellability is different from the usual notion of shellability (given e.g. in [10,
Definition 4.1]), which is called C–shellability in [26], and which may be stated as follows.

Definition 1.6 Let Ω be an n-dimensional regular CW-complex. A complex Ω or its face poset P1(Ω)
is called C–shellable if either Ω = {∅} (and so P1(Ω) is the two-element chain {0̂ < 1̂}), or else we
can linearly order its facets (open n-cells) F1, F2, . . . , Fm such that the following two conditions hold:

(C-a) ∂F1 is C–shellable of dimension n− 1.

(C-b) For 2 ≤ i ≤ m, the complex ∂Fi is C–shellable such that the C–shelling begins with the facets of
∂Fi contained in F1 ∪ · · · ∪ Fi−1.

In general, neither notion of shellability implies the other [26, page 494]. It is trivially true, however,
that the two notions of shellability coincide for the geometric realizations of simplicial spheres. We
will show in Section 2 that the same holds for cubical complexes.

2 Equivalence of usual and spherical shellability for cubical spheres

Let Cn denote the complex of faces of an n-cube with vertex set V (Cn). Any n-cube may be geo-
metrically realized in Rn as the the convex hull of the vertex set {0, 1}n. We call such a realization
φ : V (Cn) −→ R

n of a cube a standard geometric realization. By abuse of notation, we will also denote
by φ the map associating the convex hull of {φ(v) : v ∈ σ} to a face σ ∈ Cn. Thus φ associates to a
face of a cubical complex a closed face of a CW-complex. Using φ we may define the boundary ∂Cn
as the inverse image under φ of the boundary of [0, 1]n.

Following Metropolis and Rota [21], given a standard geometric realization φ, we encode the
nonempty faces σ of the n-cube with vectors (u1, u2, . . . , un) ∈ {0, 1, ∗}n such that for every
i ∈ {1, 2, . . . , n} we set ui = 0 or 1 respectively if the i-th coordinate of every element of φ(σ) is 0
or 1 respectively and ui = ∗ otherwise. Using this coding, the facets of ∂Cn will correspond to those
vectors (u1, . . . , un) for which exactly one ui is not the ∗-sign.

Definition 2.1 Let A0
i , respectively A1

i , denote the facet (u1, u2, . . . , un) with ui = 0, respectively
ui = 1 and uk = ∗ for k 6= i. Let {F1, . . . , Fk} be a collection of facets of ∂(Cn). Let r be the number
of indices i such that exactly one of A0

i and A1
i belongs to {F1, . . . , Fk}, and let s be the number

of indices j such that such that both A0
j and A1

j belong to {F1, . . . , Fk}. We call (r, s) the type of
{F1, . . . , Fk}.

Note that when the type of {F1, . . . , Fk} is (r, s) then there are exactly n−r−s coordinates i such
that neither A0

i nor A1
i belong to {F1, . . . , Fk}. Clearly the type does not depend on the choice of the

standard geometric realization.
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The following lemma plays a crucial role in the proof of several statements in this section.

Lemma 2.2 Let C be the family of all faces contained in a collection of facets of Cn of type (r, s),
where r > 0. Then there is a convex polytope P and a point p outside it such that the collection of
those faces of P which can be seen from the point p is a geometric representation of C.

Proof: Without loss of generality, we may assume that the facet A0
n belongs to C while the facet A1

n

does not. Let us represent Cn by a polytope P, given by the following facet inequalities:

1. xn ≥ 0. This is the facet A0
n.

2. xn ≤ 1. We associate A1
n to this facet.

3. For 1 ≤ i ≤ n− 1 such that A0
i ∈ C we have xi + ε · xn ≥ 0. We associate A0

i to this facet.

4. For 1 ≤ i ≤ n− 1 such that A0
i 6∈ C we have xi − ε · xn ≥ 0. We associate A0

i to this facet.

5. For 1 ≤ i ≤ n− 1 such that A1
i ∈ C we have xi − ε · xn ≤ 1. We associate A1

i to this facet.

6. For 1 ≤ i ≤ n− 1 such that A1
i 6∈ C we have xi + ε · xn ≤ 1. We associate A1

i to this facet.

It is easy to verify that the face lattice of P is isomorphic to the face lattice of Cn, i.e., we get a skewed
cube. To do so, observe that the vertex set of P is

{0, 1}n−1 × {0} ∪ {a1, b1} × {a2, b2} × · · · × {an−1, bn−1} × {1},

where the numbers a1, . . . , an−1 and b1, . . . , bn−1 are given by

ai
def=

{
− ε if A0

i ∈ C
ε if A0

i 6∈ C
, and bi

def=

{
1 + ε if A1

i ∈ C
1− ε if A1

i 6∈ C
.

Let us place ourselves at the point p = (1
2 , . . . ,

1
2 ,−R), where R > 1/2ε. A facet of P is visible from p if

and only if its defining inequality is not satisfied by the coordinates of p. Hence the facet associated to
Aji where 1 ≤ i ≤ n and j ∈ {0, 1} is visible from p if and only if Aji belongs to C. A lower-dimensional
face is visible from the point p if and only if it is contained in a visible facet. 2

The following observation is originally due to Ron Adin and Clara Chan, who used this fact without
proof. (See part (iii) of Theorem 5 and Section 4 in [2], or the implicit assumption in the proof of
Theorem 1 in [12].) The only place where a (more complicated than the present) proof appears is [17].

Lemma 2.3 Let {F1, . . . , Fk} be a collection of facets of ∂Cn and φ a standard geometric realization
of Cn. Then φ(F1) ∪ · · · ∪ φ(Fk) is an (n − 1)-sphere if and only if it has type (0, n) and it is an
(n− 1)-ball if and only if its type (r, s) satisfies r > 0.
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Proof: Consider first the case r > 0. Then according to Lemma 2.2, a collection of facets of type
(r, s) may be geometrically represented as the set of all facets of a polytope P visible from a given
point p. The union of these facets is homeomorphic to their central projection from p onto a hyperplane
separating P and p. The projection is an (n − 1)-polytope, hence it is homeomorphic to an (n − 1)-
dimensional ball.

Note next that {F1, . . . , Fk} has type (0, n) if and only if it is the collection of all facets of the
n-cube. The surface of an n-cube is an (n − 1) dimensional sphere and so {F1, . . . , Fk} must be a
sphere.

It only remains to be shown that for all other types (r, s), the set
⋃k
i=1 φ(Fi) is not homeomorphic

to an (n − 1)-ball or an (n − 1)-sphere. Here the map φ is a standard geometric realization of the
n-cube. The types not listed above are of the form (0, s) with 0 ≤ s < n. Let us fix such a type.
Consider all those coordinates i for which neither A0

i nor A1
i belong to {F1, . . . , Fk}. Without loss of

generality, we may assume that these coordinates are i = 1, 2, . . . , n− s. Consider the continuous map
ψ : Rn × [0, 1] −→ R

n, defined by

((x1, x2, . . . , xn−s, xn−s+1, . . . , xn), t) 7−→ (t · x1, t · x2, . . . , t · xn−s, xn−s+1, . . . , xn).

This map retracts
⋃k
i=1 φ(Fi) to a collection of all facets of an s-cube, i.e. an (s − 1)-dimensional

sphere. Now the lemma follows from the fact that an (s − 1)-sphere with s < n is not homotopy
equivalent to an (n− 1)-ball or an (n− 1) sphere, because its homology groups are different. 2

It is easy to see by induction on the dimension that there exists a C–shelling of the boundary of
[0, 1]n starting with the facets {φ(F1), . . . , φ(Fk)} if and only if φ(F1)∪ · · ·∪φ(Fk) is an (n−1)-ball or
an (n−1)-sphere (in the latter case k = 2n and φ(F1)∪ · · ·∪φ(Fk) = ∂[0, 1]n). Thus we may rephrase
the definition of C–shellability for finite cubical complexes in a purely combinatorial way as follows.

Lemma 2.4 Let C be an n-dimensional pure cubical complex, that is, a cubical complex whose maximal
faces are of the same dimension. An ordering F1, . . . , Fm of the facets of C induces a C-shelling of its
geometric realization if and only if for every k ∈ {2, . . . ,m} the following two conditions hold:

(i) The set of faces contained in Fk ∩ (F1 ∪ · · · ∪ Fk−1) is a pure complex of dimension (n− 1).

(ii) The collection of the facets of ∂Fk contained in F1 ∪ · · · ∪ Fk−1 has type (r, s) with r > 0 or
(r, s) = (0, n− 1).

Definition 2.5 We call the cubical complex of faces contained in Fk∩(F1∪· · ·∪Fk−1) the kth shelling
component, and the type (r, s) associated to it the type of the shelling component. We will also
consider the empty cubical complex as a shelling component and say that the first shelling component
has type (0, 0).

Using Lemma 2.4, the equivalence of C–shellability and S–shellability for cubical spheres depends
on the following two key lemmas.

8



Lemma 2.6 Let C be the family of all faces contained in a collection of facets of Cn of type (r, s),
where r > 0. Then the boundary complex of C is C–shellable.

Proof: As in the proof of Lemma 2.3, we use Lemma 2.2 to represent C as the subdivision of an
(n − 1)-dimensional polytope Q. Here the facets of C are geometrically represented as the set of all
facets of a polytope P visible from a given point p, and Q is their central projection from p onto a
hyperplane. The boundary complex of Q is isomorphic to the boundary complex of C, which is thus
C–shellable by the theorem of Bruggesser and Mani [11]. 2

Lemma 2.7 Let F1, . . . , F2s be a collection of facets of ∂Cn of type (0, s) with 0 < s < n, and Ω the
regular CW-complex representing the cubical complex of faces contained in F1 ∪ · · · ∪ F2s. Then the
partially ordered set P1(Ω) is not near-Eulerian.

Proof: According to the proof of Lemma 2.3, φ(F1)∪ · · · ∪φ(F2s) is homotopy equivalent to a sphere
of dimension s− 1 ≥ 0, and so it has reduced Euler characteristic (−1)s−1. By [23, Proposition 3.8.9],
we obtain µ(P1(Ω)) = (−1)s−1 6= 0. Therefore P1(Ω) cannot be near-Eulerian. 2

Theorem 2.8 Let Ω be the geometric realization of a cubical complex C as a regular CW-complex.
Assume that Ω = {∅} or it is an n-sphere. Then an ordering F1, . . . , Fm of the facets of C induces a
C-shelling if and only if it induces an S–shelling.

Proof: Assume first that F1, . . . , Fm is an S–shelling. Then by the definition of S–shellability and by
Lemma 2.7, conditions (i) and (ii) of Lemma 2.4 are satisfied. Thus F1, . . . , Fm is a C–shelling.

We show the other implication by induction on dimension. For n = −1 we get that Ω = {∅} is both
S–shellable and C–shellable. Assume now we are given a C–shelling F1, . . . , Fm of the cubical sphere
Ω of dimension n ≥ 0. The complex ∂F1 is C–shellable by the definition of a C–shelling, and since it
is homeomorphic to a sphere of dimension n − 1, it is also S–shellable by the induction hypothesis.
Hence condition (S-a) of Definition 1.5 is satisfied. For condition (S-b) we must first check that, for
2 ≤ k ≤ m − 1, the collection of the facets of ∂Fk contained in F1 ∪ · · · ∪ Fk−1 cannot have type
(0, n − 1). In fact, as long as no C–shelling component of type (0, n − 1) occurs, the union of the
enumerated cells is homeomorphic to an n-ball, and the first time we attach a C–shelling component
of type (0, n − 1), we obtain an n-sphere, to which no further cells can be added without getting an
Ω properly containing an n-sphere and thus not homeomorphic to it. Hence by Lemma 2.4, we may
assume that for 2 ≤ k ≤ m − 1, the collection of the facets of ∂Fk contained in F1 ∪ · · · ∪ Fk−1 has
type (r, s) with r > 0. Thus for Γk

def= cl[∂Fk − ((F1 ∪ · · · ∪ Fk−1) ∩ Fk)], the partially ordered set
P1(Γk) is near-Eulerian of dimension n− 1. We only need to show that Σ̃Γk is S–shellable, with the
first facet of the shelling being the facet τ = τk adjoined to Γk to obtain Σ̃Γk.

Without loss of generality, we may assume that Fk is represented as a standard n-cube and ex-
actly the facets G1

def= A0
1, G2

def= A1
1, . . . , G2s−1

def= A0
s, G2s

def= A1
s, G2s+1

def= A0
s+1, G2s+2

def=
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A0
s+2, . . . , G2s+r

def= A0
s+r of ∂Fk are contained in F1 ∪ · · · ∪ Fk−1. We claim that when we put the

semisuspending facet G0
def= τ in front of this collection, we obtain an S–shelling of Σ̃Γk. It is easy

to see again that for 1 ≤ i ≤ 2s+ r− 1, the collection (G0 ∪ · · · ∪Gi−1) ∩Gi of facets of Gi is of type
(ri, si) where ri > 0. Hence we may use the induction hypothesis to show that the condition imposed
on these facets by the definition of S–shellability is satisfied. Finally, the boundary complex of G0 is
C-shellable by Lemma 2.6 and thus S-shellable by the induction hypothesis. 2

Thus in the case of cubical spheres, we may simply speak about shellings without any reference to
C-shellings or S-shellings.

Definition 2.9 Given a shellable cubical n-sphere C and a shelling F1, . . . , Fm of it, we denote the
number of shelling components of type (r, s) by cr,s. In particular, we have c0,0 = c0,n = 1. We call
the vector (. . . , cr,s, . . .) the c-vector of the shelling.

Similar to the way Stanley treated the simplicial case in [26], we may express the cd-index of a
shellable cubical sphere in terms of the numbers cr,s, and the cd-indices of (semisuspended) shelling
components of one dimension higher. For this purpose, we introduce the following notation.

Definition 2.10 Let Bn be the Boolean algebra and Cn the cubical lattice of rank n. That is, Bn is
the face lattice of the (n− 1)-dimensional simplex 4n−1 while Cn is that of the cube Cn−1.We denote
Φ(Bn) and Φ(Cn) by Un and Vn, respectively. In particular, for n = 1 we have U1 = V1 = 1.

Definition 2.11 Given a collection F1, . . . , Fk of k ≤ n− 1 facets of ∂4n−1, we denote the semisus-
pension of the poset [0̂, F1]∪· · ·∪[0̂, Fk]∪{1̂} ⊂ Bn by Bn,k and its cd-index by Un,k. Given a collection
F1, . . . , Fr+2s of facets of ∂Cn−1 of type (r, s), where r is positive, we denote the semisuspension of the
poset [0̂, F1] ∪ · · · ∪ [0̂, Fr+2s] ∪ {1̂} ⊂ Cn by Cn,r,s and its cd-index by Vn,r,s.

Example 2.12 Cn+1,1,0 is obtained from Cn by adding an extra 1̂ above the maximal element and
adding a new coatom covering all coatoms of the original lattice. Hence we have Vn+1,1,0 = Vn · c.

We have the following cubical analogue for a special case of [26, Theorem 3.1].

Proposition 2.13 Let C be an (n− 1)-dimensional shellable cubical sphere which has a shelling with
c-vector (. . . , cr,s, . . .). Then the cd-index of P1(C) is given by

Φ(P1(C)) = Vn+1,1,0 +
∑
r,s
r>0

cr,s · (Vn+1,r+1,s − Vn+1,r,s). (2.1)

Proof: For every (r, s) with 0 < r and r + s ≤ n − 1 we may take a shelling F1, . . . , F2n of the
boundary of an n-cube such that the collection {F1, . . . , Fr+2s} has type (r, s) and the collection
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{F1, . . . , Fr+2s+1} has type (r+1, s). Then the (r+2s+1)st shelling component has type (r, s) and the
difference between the cd-indices of the semisuspensions of the two collections is Vn+1,r+1,s−Vn+1,r,s.

As a consequence of Lemma 1.4, if the k-th shelling step of C has type (r, s) then the difference
between the cd-indices of the semisuspensions of the first k + 1 facets and of the first k facets is the
same as above, i.e., Vn+1,r+1,s−Vn+1,r,s. Finally, P1(C) is the semisuspension of the complex obtained
just before the last shelling step. 2

3 Adin’s cubical h-vector and the cd-index of a cubical Eulerian
poset

A fundamental difference between simplicial complexes and cubical complexes is that, in the simplicial
case, the number of shelling components of each type is determined by the h-vector; whereas, in the
cubical case, this number is not even an invariant of the complex.

Definition 3.1 Let P be a graded simplicial or cubical poset, either without a distinguished maximum
element 1̂ and of rank n, or with a distinguished maximum element, and of rank n + 1.1 For i =
−1, 0, . . . , n−1 we denote the number of elements of rank i+1 in P by fi. The vector (f−1, f0, . . . , fn−1)
is called the f -vector of P . When P is simplicial we define its h-vector by

n∑
i=0

hi · xn−i
def=

n∑
j=0

fj−1 · (x− 1)n−j .

It is well known that when P is the face poset of an (n−1)-dimensional C–shellable simplicial complex,
hi is the number of facets Fj in any shelling F1, . . . , Fm for which Fj ∩ (F1 ∪ · · · ∪Fj−1) is a collection
of i facets of ∂Fj . In this sense the c-vector of a shelling of a cubical sphere is an analogue of the
h-vector. It must be noted, however, that a cubical sphere may have several c-vectors corresponding
to different shelling orders, as shown in the following example.

Example 3.2 For the three dimensional cube there are essentially two different shellings. These two
shellings have different c-vectors:

Shelling order c0,0 c1,0 c2,0 c1,1 c0,2

A0
1, A

0
2, A

0
3, A

1
1, A

1
2, A

1
3 1 1 2 1 1

A0
1, A

0
2, A

1
1, A

0
3, A

1
2, A

1
3 1 2 0 2 1

Let us note here the following straightforward relationship between the f -vector and the c-vector
of a shelling for a C-shellable (n− 1)-dimensional cubical complex C.

n−1∑
k=0

fk · xk =
∑
r,s

cr,s · (x+ 2)n−1−r−s · (x+ 1)r · xs. (3.1)

1With these distinctions we get the exact same definitions for simplicial posets as the ones given by Stanley in [25]
and [26].
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In fact, it is easy to verify that, whenever we attach a shelling component of type (r, s), every newly
added face is at least s-dimensional, and for k ≥ s the number of new k-dimensional faces is

∑
i+j=k−s

(
n− 1− r − s

i

)
· 2n−1−r−s−i ·

(
r

j

)
.

Fortunately there are some linear relations between the polynomials Vn,r,s. As a consequence of
Lemma 1.4 we have

Vn,r+1,s − Vn,r,s = Vn,r,s+1 − Vn,r+1,s for n > 1, r > 0, s ≥ 0 and r + s ≤ n− 1. (3.2)

Repeated use of this equation allows us to express all polynomials Vn,i,j as linear combinations of the
polynomials Vn,1,0, Vn,1,1, Vn,1,2, . . . , Vn,1,n−2 as follows.

Vn,r,s =
1

2r−1
·
r−1∑
k=0

(
r − 1
k

)
· Vn,1,s+k for n > 1, r > 0, s ≥ 0 and r + s ≤ n− 1. (3.3)

As a consequence of equation (3.2) we also have

Vn,r+1,s − Vn,r,s =
1
2
· (Vn,r,s+1 − Vn,r,s) for n > 1, r > 0, s ≥ 0 and r + s ≤ n− 1. (3.4)

Substituting equations (3.3) and (3.4) into equation (2.1), we obtain the following formula for the
cd-index of an (n− 1)-dimensional shellable cubical sphere C.

Φ(P1(C)) = Vn+1,1,0 +
∑
r,s
r>0

cr,s · (Vn+1,r+1,s − Vn+1,r,s)

= Vn+1,1,0 +
∑
r,s
r>0

cr,s ·
1
2
· (Vn+1,r,s+1 − Vn+1,r,s)

= Vn+1,1,0 +
∑
r,s
r>0

cr,s ·
(

1
2r
·
r−1∑
k=0

(
r − 1
k

)
· Vn+1,1,s+k+1 −

1
2r
·
r−1∑
k=0

(
r − 1
k

)
· Vn+1,1,s+k

)

= Vn+1,1,0 +
n−1∑
l=1

 ∑
r,s

r≥max(1,l−s)

cr,s
2r
·
(

r − 1
l − 1− s

) · (Vn+1,1,l − Vn+1,1,l−1).

Observe that by the proof of Stanley’s theorem about the non-negativity of the coefficients of an
S–shellable CW-sphere in [26], the polynomials Vn+1,1,l − Vn+1,1,l−1 have non-negative coefficients.
Keeping in mind Stanley’s [26, Theorem 3.1], our last equality suggests to define h0

def= 1 and

hl
def=

∑
r,s

r≥max(1,l−s)

cr,s
2r
·
(

r − 1
l − 1− s

)
for 1 ≤ l ≤ n− 1 (3.5)

to be the first n entries of the cubical h-vector. This is equivalent to setting

n−1∑
l=0

hl · xl = 1 +
∑
r,s
r>0

cr,s
2r
· (1 + x)r−1 · xs+1,
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which, by c0,0 = c0,n−1 = 1, is equivalent to

(1 + x) ·
n−1∑
l=0

hl · xl = 1− xn + x ·
∑
r,s

cr,s
2r
· (1 + x)r · xs.

Proposition 3.3 Given a shellable cubical (n − 1)-sphere C and the c-vector of one of its shellings,
we have ∑

r,s

cr,s
2r
· (1 + x)r · xs =

n−1∑
k=0

fk · xk
(

1− x
2

)n−1−k
,

and so the expression (3.5) independent of the choice of the shelling.

Proof: Substituting
2 · x
1− x

for x in the equation (3.1) we obtain

n−1∑
k=0

fk ·
2k · xk

(1− x)k
=

∑
r,s

cr,s ·
(

2 · x
1− x

)s
·
(

2 · x
1− x

+ 1
)r
·
(

2 · x
1− x

+ 2
)n−1−r−s

=
2n−1

(1− x)n−1

∑
r,s

cr,s
2r
· xs · (x+ 1)r,

and hence the claim follows. 2

Definition 3.4 Let P be an Eulerian cubical poset of rank n+ 1, with f-vector (f−1, f0, . . . , fn). We
define the h-vector of P by the following polynomial equation.

n∑
l=0

hl · xl
def=

1 + xn+1 +
n−1∑
k=0

fk · xk+1 ·
(

1−x
2

)n−1−k

1 + x

Observe that the right hand side of the definition is a polynomial because of the Eulerian equation∑n
j=−1(−1)j · fj = 0. By Proposition 3.3, for a shellable cubical (n− 1)-sphere the hl’s given by this

definition satisfy h0 = 1 and equation (3.5). In particular, the h-vector of a shellable cubical sphere
is non-negative. We also added hn = 1, and it follows from the cubical Dehn-Sommerville equations
that for every Eulerian cubical poset of rank n + 1, we have hi = hn−i for all i. Using the Eulerian
equation

∑n
j=−1(−1)j · fj = 0 it is also easy to confirm that whenever a cubical Eulerian poset P

of rank n + 1 is a lattice, this h-vector is identical with the 1/2n−1-multiple of the cubical h-vector
suggested by Adin in [2] for the (n − 1)-dimensional cubical complex with face poset P \ {1̂}. Using
this definition, for the case when P \ {1̂} is the face poset of the boundary complex of an n-cube, we
obtain that the h-vector is (1, 1, . . . , 1), in close analogy to the simplicial case. On the other hand,
after the normalization, our h-vector does not necessarily have integer entries.

Example 3.5 Let P be the Eulerian cubical poset for which P \ {1̂} is the face poset of the two-
dimensional cubical sphere represented in Figure 1. (The facets of the complex are ABCD, ABFE,
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Figure 1: A two-dimensional cubical sphere

BGKF, BCHG, CDIH, AEID, EFKJ, GHLK, HIML, EJMI, and JKLM.) For this complex we have

f−1 = 1, f0 = 13, f1 = 22, and f2 = 11.

Hence the cubical h-vector is given by

3∑
l=0

hl · xl =
1 + x4 +

2∑
k=0

fk · xk+1 ·
(

1−x
2

)2−k

1 + x
=

1 + x4 + 13 · x ·
(

1−x
2

)2
+ 22 · x2 ·

(
1−x

2

)
+ 11 · x3

1 + x

=
x4 + 13

4 · x
3 + 9

2 · x
2 + 13

4 · x+ 1
1 + x

= x3 +
9
4
· x2 +

9
4
· x+ 1.

Using the cubical h-vector, we have the following cubical analogue of Stanley’s [26, Theorem 3.1].

Theorem 3.6 Let P be an Eulerian cubical poset of rank n+ 1, with h-vector (h0, h1, . . . , hn). Then
we have

Φ(P ) = h0 · Vn+1,1,0 +
n−1∑
l=1

hl · (Vn+1,1,l − Vn+1,1,l−1)

Proof: Our previous calculations in this section show that the theorem holds in the case when
P = P1(C) where C is a shellable cubical sphere. Just like in the simplicial case, the cd-index of an
Eulerian cubical poset depends linearly on the f -vector, and so also on the h-vector. It is sufficient
to prove that the h-vectors of the shellable cubical (n − 1)-spheres linearly span the vector space of
all h-vectors of cubical posets of rank n+ 1, since then the result extends by linearity to all Eulerian
cubical spheres.

This fact is the consequence of two results. On the one hand, Adin has proved that the h-vector
of an Eulerian cubical poset of rank n+ 1 satisfies the equalities

hi = hn−i for i = 1, . . . , n.
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This is (ii) of Theorem 5 in [2].2 Hence the dimension of the vector space spanned by the flag h-
vectors of Eulerian cubical posets of rank n+ 1 is at most bn2 c+ 1. On the other hand, one may give
bn2 c+1 cubical polytopes of dimension n, whose f -vectors (and hence also their h-vectors) are linearly
independent. See, for instance, Part 1 of section 9.4 in Grünbaum’s book [16]. The face complex C of
a cubical polytope is a cubical sphere, and it is shellable according to the famous result of Bruggesser
and Mani [11]. 2

As we have seen, the hi’s do not have to be integers, yet when we multiply them with the cd-
polynomials in Theorem 3.6, the sum must be a cd-polynomial with integer coefficients, since the
cd-index of every Eulerian poset must be integral. Actually, for the cd-index of a cubical Eulerian
poset even more can be said.

Proposition 3.7 Let P be an Eulerian cubical poset of rank n + 1. Let w be a cd-monomial of
degree n, which contains m factors equal to d. If m ≥ 1 then the coefficient of w in the cd-index Ψ(P )
is divisible by 2m−1.

For zonotopes, i.e., polytopes which are Minkowski sums of line segments, a sharper results holds.
Namely the coefficient of the cd-monomial w is divisible by 2m where m is the number of d’s in w.
This was first proven in [8]. A more explicit formula for the cd-index of zonotopes (and more generally,
oriented matroids) appears in [9]. For more results on the parity of the f -vector of cubical polytopes
see [4].

Proof of Proposition 3.7: Our proof will follow the proof in [8]. First observe that for a cubical
poset P and a non-empty subset S of {1, . . . , n} we have that 2|S|−1 divides fS . Indeed, to choose
such a chain in the face lattice, first choose a face of rank s, where s is the largest element in the
set S. This face is a cube. The remainder of the chain will be chosen from this cube. But the cube is
centrally symmetric, hence every time we choose an element the number of choices is divisible by 2.
Thus the observation follows.

A subset S is called sparse if it does not contain two consecutive integers. In [8, Section 6] Billera,
Ehrenborg, and Readdy define the sparse k-vector by

kS =
∑
T⊆S

(−2)|S−T | · fT ,

for a sparse subset S of {1, . . . , n}. Let w be a cd-monomial containing exactly m factors equal to d.
Then the coefficient of w in the cd-index Ψ(P ) is an integer linear combination of kS , where S ranges
over the sparse sets of cardinality m; see [8, Proposition 6.6]. A more explicit formula was given
later [7].

Since 2|T |−1 divides fT we obtain that 2|S|−1 divides kS . Now using [8, Proposition 6.6] the result
follows. 2

2Although Adin stated his theorem only for Eulerian cubical posets P = P1(C) obtained from (not necessarily
shellable) cubical spheres C, in his proof he only uses equalities holding for every Eulerian cubical poset. (He observes
this fact in a note at the end of section 4 of [2].)
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As noted earlier, the differences Vn+1,1,l − Vn+1,1,l−1 have non-negative coefficients. Hence the
non-negativity of the h-vector of an Eulerian cubical poset P implies the non-negativity of Φ(P ).
Adin asked whether the cubical h-vector of a Cohen-Macaulay cubical complex is non-negative ([2,
Question 1]). Because of the analogy to the simplicial case [25, Theorem 3.10] we make the following
conjecture.

Conjecture 3.8 The h-vector of every Gorenstein∗ cubical poset is non-negative.

For the definition of Cohen-Macaulay and Gorenstein∗ posets we refer the reader to section 2 in [26].
This conjecture, if true, implies the special case of [26, Conjecture 2.1] when the poset is a cubical
poset. The simplicial case is [26, Corollary 3.1].

4 The cd-index of semisuspended shelling components

In the remaining part of this paper we develop a cubical analogue of Stanley’s conjecture [26, Conjec-
ture 3.1] to describe the polynomials Vn,i,j combinatorially. In the process, we will also obtain a new
combinatorial description of the polynomials Un,k. In this section we give a formula for Vn+2,i,j and
for Un+2,k, using the chain weight calculation method.

Before starting, we wish to remind the reader of the following formulas; see [13, Section 3, equa-
tion (1) and Section 5, equation (3)] or [19, equations (5) and (16)].

Proposition 4.1 (Purtill) We have

Un+2 =
n∑
i=1

(
n

i

)
· Ui · d · Un+1−i + c · Un+1 for n ≥ 1,

and

Vn+2 =
n−1∑
i=0

(
n

i

)
· 2n−i · Vi+1 · d · Un−i + Vn+1 · c for n ≥ 1.

Proposition 4.1 gives the recursion formulas for the special polynomials Un,n−1 = Un and Vn,1,n−2 =
Vn. In the following theorems these special cases will not be covered. The next result is analogous
to [19, Proposition 6]. See also [14, Theorem 8.1].

Theorem 4.2 For 2 ≤ k ≤ n we have

Un+2,k =
∑
i≤k−2
j≤n−k

(
k − 1
i

)(
n− k + 1

j

)
· Ui+j+1 · d · Un−i−j,k−i−1

+
∑
i≤k−2

(
k − 1
i

)
· Un+2−k+i · d · Uk−i+1 + Un+1 · c.
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Proof: We calculate the total weight of the chains in Bn+2,k \ {0̂, 1̂}. We assume that Bn+2,k was
obtained by adding an extra coatom E to the poset

⋃k
i=1[0̂, {1, 2, . . . , n+ 2} \ {i}] ∪ {1̂}. Recall that

(x, z] denotes the half open interval {y : x < y ≤ z}.

Consider first those chains c for which every element is either the coatom E or a set not containing
the element 1. All the elements of such chains belong to the set (0̂, {2, . . . , n + 2}] ∪ {E}. A proper
subset σ of {2, . . . , n + 2} is not less than E if and only if σ contains the set {k + 1, . . . , n + 2}.
Let us provisorily add these missing < relations between a proper subset of {2, . . . , n + 2} and E.
The total weight of chains in (0̂, {2, . . . , n + 2}] ∪ {E} with all such < relations added is Un+1 · c.
From this we need to subtract the total weight of all chains which use one of the provisorily added <
relations. These chains are exactly those which contain E as their largest element, and a superset σ
of {k + 1, . . . , n + 2}. There are

(k−1
i

)
ways to choose such a σ with n + 2 − k + i elements, and the

total weight of all chains to be subtracted is

k−2∑
i=0

(
k − 1
i

)
· Un+2−k+i · b · (a− b)k−i−2 · b.

Here the first b is produced by σ and the second b by E. Hence the total weight of all chains belonging
to this case is

Un+1 · c−
k−2∑
i=0

(
k − 1
i

)
· Un+2−k+i · b · (a− b)k−i−2 · b. (4.1)

From now on we assume that every chain considered contains a set λ with 1 ∈ λ.

Let us now compute the total weight of all chains c which contain a set λ with 1 ∈ λ and n+2 6∈ λ.
We may assume that λ is the largest element of c with respect to n+2 6∈ λ. We denote the cardinality
|λ∩{2, . . . , k}| by i and the cardinality |λ∩{k+1 . . . , n+1}| by j. So the size of λ is i+j+1, and thus
the open interval (0̂, λ) is isomorphic to Bi+j+1 \ {0̂, 1̂}. When j ≤ n− k holds then all elements of c
above λ belong to the half-closed interval [λ ∪ {n+ 2}, 1̂), which is isomorphic to Bn−i−j,k−i−1 \ {1̂}.
When j = n−k+1 then every element above λ belongs either to the half-closed interval [λ∪{n+2}, 1̂)
which is now isomorphic to Bk−i−1 \ {1̂}, or the only element above λ is E. Hence the total weight of
all such chains is

∑
i≤k−2
j≤n−k

(
k − 1
i

)(
n− k + 1

j

)
· Ui+j+1 · b · a · Un−i−j,k−i−1

+
k−2∑
i=0

(
k − 1
i

)
· Un+2−k+i · b · a · Uk−i−1 +

k−2∑
i=0

(
k − 1
i

)
· Un+2−k+i · b · (a− b)k−i−2 · b.

(4.2)

The binomial coefficients in the above sum account for the number of ways of choosing the i elements
of λ belonging to {2, . . . , k} and the j elements of λ belonging to {k + 1 . . . , n + 1}. The first b in
every summand is produced by λ, the subsequent factors a = (a − b) + b in the first two sums are
produced by the set λ ∪ {n+ 2} which may be included in a chain or not, independently of all other
decisions. The third summand corresponds to the case when j = n − k + 1 and the only element of
the chain above λ is E.

For all the remaining chains the smallest set λ ∈ c with 1 ∈ λ contains n + 2. We denote again
|λ ∩ {2, . . . , k}| by i and |λ ∩ {k + 1 . . . , n + 1}| by j. A similar but easier reasoning to the previous
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case shows that the total weight of these chains is

∑
i≤k−2
j≤n−k

(
k − 1
i

)(
n− k + 1

j

)
· Ui+j+1 · a · b · Un−i−j,k−i−1

+
k−2∑
i=0

(
k − 1
i

)
· Un+2−k+i · a · b · Uk−i−1.

(4.3)

Adding the weights (4.1), (4.2), and (4.3) we obtain the statement of the theorem. 2

Theorem 4.3 For 1 ≤ i we have

Vn+2,i,j =
∑

i0,i1,i∗,j∗,k∗
i0+j−j∗>0
i1+k−k∗>0

(
i− 1
i0 i1 i∗

)(
j

j∗

)(
k

k∗

)
· 2j−j∗+k−k∗ · Vi∗+j∗+k∗+1 · d · Un−i∗−j∗−k∗,i0+j−j∗

+
∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · d · Ui0+j−j∗ + Vn+1 · c.

where k = n+ 1− i− j.

Proof: We use the notation introduced in Definition 2.1. Let us assume that we obtained Cn+2,i,j

from the collection of facets A0
1, A

0
2, . . . , A

0
i , A

0
i+1, . . . , A

0
i+j , A

1
i+1, A

1
i+2, . . . , A

1
i+j of ∂Cn+1, by adding

an extra facet E.

We apply equation (1.3) to compute Vn+2,i,j by calculating the total weight of all strictly increasing
chains of Cn+2,i,j \ {0̂, 1̂}.

Consider first those chains c which contain an element of the form τ = (1, u2, . . . , un+1). We may
assume that τ is the largest such face. Let us denote the number of 1’s 0’s, and ∗’s among u2, . . . , ui
by i0, i1, and i∗ respectively. Let j∗ stand for the number of ∗’s among ui+1, . . . , uj . Finally, let k∗
stand for the number of ∗’s among ui+j+1, ui+j+2, . . . , un+1. Because τ is in our choice of Cn+2,i,j , we
must have i0 + j − j∗ > 0. The elements of c below τ form an arbitrary chain of the open interval
(0̂, τ), which is isomorphic to Ci∗+j∗+k∗+1 \ {0̂, 1̂}. When i1 + k − k∗ > 0 then the elements of c
above τ form an arbitrary chain of the half-open interval [(∗, u2, . . . , un+1), 1̂) which is isomorphic to
the interval Bn−i∗−j∗−k∗,i0+j−j∗ \ {1̂}. When i1 = k − k∗ = 0 then the elements of c above τ form
either an arbitrary chain of the half-open interval [(∗, u2, . . . , un+1), 1̂) which is now isomorphic to
Bi0+j−j∗ \ {1̂}, or the only element above τ in c is the extra facet E. Taking also into account the
numbers of ways of choosing τ for fixed i0, i1, i∗, j∗, and k∗, we obtain that the total weight of all

18



chains containing a face with u1 = 1 is∑
i0,i1,i∗,j∗,k∗
i0+j−j∗>0
i1+k−k∗>0

(
i− 1
i0 i1 i∗

)(
j

j∗

)(
k

k∗

)
· 2j−j∗+k−k∗ · Vi∗+j∗+k∗+1 · b · a · Un−i∗−j∗−k∗,i0+j−j∗

+
∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · b · a · Ui0+j−j∗

+
∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · b · (a− b)i0+j−j∗−1 · b.

(4.4)

Observe that the factor Vi∗+j∗+k∗+1 gives the correct contribution even when i∗ + j∗ + k∗ = 0. In
the first two summands the factors b are produced by the faces τ = (1, u2, . . . , un+1), and the factors
a = (a−b) +b are produced by the faces (∗, u2, . . . , un+1) which may be included in the chain or not,
independently of all other decisions. The third summand corresponds to the case when i1 = k−k∗ = 0,
and the only element of c above τ is E.

We are left with those chains which contain only elements from the set {E} ∪ {(u1, . . . , un+1) :
u1 = 0 or ∗}. We divide these chains further into two subclasses.

Assume first that there is an element τ in the chain c, which is of the form (∗, u2, . . . , un+1). We
suppose that τ is the smallest in c having this property. Then every element below τ in c belongs to
the open interval (0̂, (0, u2, . . . , un)). A very similar but somewhat simpler reasoning to the previous
case yields that the total weight of all such chains is∑

i0,i1,i∗,j∗,k∗
i0+j−j∗>0
i1+k−k∗>0

(
i− 1
i0 i1 i∗

)(
j

j∗

)(
k

k∗

)
· 2j−j∗+k−k∗ · Vi∗+j∗+k∗+1 · a · b · Un−i∗−j∗−k∗,i0+j−j∗

+
∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · a · b · Ui0+j−j∗ .

(4.5)

The chains not taken into account in the sums (4.4) and (4.5) are exactly the chains contained in
(0̂, (0, ∗, ∗, . . . , ∗)] ∪ (0̂, E]. Observe that exactly those elements σ = (0, u2, . . . , un+1) of the interval
(0̂, (0, ∗, ∗, . . . , ∗)) are not less than E which satisfy

ui+j+1 = ui+j+2 = · · · = un+1 = ∗ and 1 6∈ {u1, . . . , ui}. (4.6)

Therefore, if we add all missing < relations between E and the proper faces of (0, ∗, ∗, . . . , ∗), we add
chains of total weight∑

i0,j∗
i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · b · (a− b)i0+j−j∗−1 · b.

Here the first b is produced by the largest σ with property (4.6) in every added chain, and the second b
is produced by E. The total weight of the chains in the poset with the < relations added is Vn+1 · c,
and so we obtain the contribution

Vn+1 · c−
∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · b · (a− b)i0+j−j∗−1 · b. (4.7)
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in the last case.

Adding the sums (4.4), (4.5), and (4.7) we obtain the stated formula for Vn+2,i,j . 2

It would be interesting to find a more compact recursion for the polynomials Vn,i,j . Could there
be a recursion using derivations in analogy to the results in [14]?

5 Augmented André∗ signed permutations

Let X be a finite (possibly empty) linearly ordered set with m elements and linear order Λ. A
permutation on X is a list (τ1, . . . , τm) such that every letter of X occurs exactly once. We will say
that i ∈ {2, . . . ,m} is a descent of τ if we have τi−1 > τi (otherwise i is an ascent). The descent set
DΛ(τ) of τ is the set

DΛ(τ) = {i : τi−1 > τi}.

We say that τ has a double descent if there is an index i, where 2 ≤ i ≤ m − 1 such that τ has a
descent at the ith and (i + 1)st positions. In other words, both i and i + 1 belong to DΛ(τ). Given
a (possibly empty) subinterval [i, j] ⊆ {1, 2, . . . ,m}, we define the restriction of τ to [i, j] to be the
permutation τ

∣∣∣[i,j] = (τi, τi+1, . . . , τj).

Definition 5.1 Let X be a finite linearly ordered set with linear order Λ. A permutation τ =
(τ1, . . . , τm) on X is an André∗ permutation if it satisfies the following:

1. The permutation τ has no double descents.

2. For all 2 ≤ i < j ≤ m, if τi−1 = maxΛ{τi−1, τi, τj−1, τj} and τj = minΛ{τi−1, τi, τj−1, τj}, then
there exists a k, with i < k < j such that τi−1 <Λ τk.

We call an André∗ permutation augmented if its first letter is minΛX. We denote the set of augmented
André∗ permutations by A(X).

Observe that we obtain the usual definition of André permutations (as it is given in [15] or in [22])
if we read the permutations backwards and reverse the linear order. This modified approach was first
introduced by Ehrenborg and Readdy in [13], and will allow us to have a more comfortable description
of the polynomials Vn,i,j .

In analogy with [22, Corollary 5.6] we have the following recursive description of augmented André∗

permutations.

Proposition 5.2 Let X be a finite set with linear order Λ and |X| = n. A permutation τ =
(τ1, . . . , τn) on X is an augmented André∗ permutation if and only if for m def= τ−1(maxΛX) the
permutations τ

∣∣∣[1,m−1] and τ
∣∣∣[m+1,n] are augmented André∗ permutations and τ1 = minΛX.
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Whenever X has at least two elements, τ1 = minΛX guarantees m > 1, and the length of τ
∣∣∣[1,m−1]

is less than the length of τ . The recursion starts with observing that for X = ∅ or |X| = 1 every
permutation ofX is an augmented André∗ permutation. The fact that the empty word is an augmented
André∗ permutation is also used in the extreme case when m = n.

Definition 5.3 Let N be a subset of P of cardinality n. Define −N = {−i : i ∈ N}. A (non-
augmented) signed permutation σ on the set N is a list of the form

(σ1, σ2, . . . , σn)

such that for all i, σi ∈ N ∪−N and (|σ1|, |σ2|, . . . , |σn|) is a permutation on N . An augmented signed
permutation σ on N is a list

(0, σ1, σ2, . . . , σn)

such that (σ1, σ2, . . . , σn) is a signed permutation on N . We will write σ0 = 0.

As in the signless case, we use the notation σ
∣∣∣[i,j] to denote the restricted permutation σ

∣∣∣[i,j] =
(σi, σi+1, . . . , σj).

Let Λ be a linear order on the set N ∪ {0} ∪ −N . The descent set of a signed permutation σ
(augmented or non-augmented) with respect to Λ is the set

DΛ(σ) = {i : σi−1 >Λ σi}.

Here DΛ(σ) is a subset of {1, 2, . . . , n} for augmented permutations, and it is a subset of {2, . . . , n}
for non-augmented permutations.

As before, we say that a signed permutation σ as a double descent if there is an i such that both i
and i+ 1 belong to the descent set DΛ(σ) of σ.

Assume from now on that i >Λ 0 and i >Λ −i holds for all i ∈ N .

Definition 5.4 Let N be a subset of the positive integers P of cardinality n. If n = 0 then (0) is the
only augmented André∗ signed permutation on N . If n > 0 then an augmented signed permutation
σ = (0 = σ0, σ1, . . . , σn) on the set N is an augmented André∗ signed permutation if the following
three conditions are satisfied:

1. The permutation σ has no double descents.

2. For all 1 ≤ i < j ≤ n, if σi−1 = maxΛ{σi−1, σi, σj−1, σj} and σj = minΛ{σi−1, σi, σj−1, σj}, then
there exists a k, with i < k < j such that σi−1 <Λ σk.

3. For x = maxN , there exists 1 ≤ m ≤ n such that σm = x and that σ
∣∣∣[0,m−1] is an augmented

André∗ signed permutation on the set J , where J = {|σk| : 1 ≤ k ≤ m− 1}.

21



In particular, condition 3 implies that the letter x = maxN appears with positive sign in an augmented
André∗ signed permutation.

Observe that conditions 1 and 2 of Definition 5.4 are equivalent to the following

1’. The permutation (0 = σ0, σ1, . . . , σn) is an André∗ permutation on the set {0 = σ0, σ1, . . . , σn}
linearly ordered by the restriction of Λ.

A non-augmented signed permutation satisfying conditions 1 and 2 in Definition 5.4 is called a
non-augmented André∗ signed permutation. (For non-augmented permutations we need to rewrite
condition 2 as: “For all 2 ≤ i < j ≤ n . . .”.) Clearly, a signed permutation σ = (σ1, . . . , σn) is
a non-augmented signed André∗ permutation, if and only if it is an André∗ permutation on the set
{σ1, . . . , σn} linearly ordered by the restriction of Λ. We denote the set of all augmented André∗ signed
permutations on the set N by A±(N) and the set of all non-augmented André∗ signed permutations
on the set N by N±(N). Furthermore, we denote the set of those non-augmented André∗ signed
permutations which begin with their smallest element (with respect to the linear order Λ) by N±0 (N).
That is,

N±0 (N) def=
{
(σ1, σ2, . . . , σn) ∈ N±(N) : σ1 = minΛ{σ1, σ2, . . . , σn}

}
.

In particular, for N = ∅, the set N±0 (∅) consists only of the empty permutation.

Example 5.5 Let N def= {1, 2, . . . , n} and consider the linear order

−n <Λ −n+ 1 <Λ · · · <Λ −1 <Λ 0 <Λ 1 <Λ · · · <Λ n− 1 <Λ n

on −N∪{0}∪N . Then A±(N), N±(N), and N±0 (N) are the same as the similarly denoted sets of aug-
mented (respectively non-augmented) r-signed André-permutations studied in [13] for r = (2, 2, . . . , 2).
The set A±(N) may be obtained from Purtill’s set of augmented signed André permutations defined
in [22] by reversing the permutations and replacing each k ∈ −N ∪N with −k. 3

Example 5.6 Let N def= {1, 2, . . . , n} and consider the linear order

0 <Λ −1 <Λ 1 <Λ −2 <Λ 2 <Λ · · · <Λ −n <Λ n

on −N∪{0}∪N . Then A±(N) andN±(N) may be obtained from the corresponding sets of augmented
(respectively non-augmented) signed André permutations defined in [19] on the set {1, 2, . . . , n + 1}
by reading each permutation backwards, and replacing each letter k with n+ 1− k, while keeping its
sign.

The following two lemmas describe how André∗ signed permutations behave under restriction.

Lemma 5.7 Let σ = (0, σ1, . . . , σn) be an augmented André∗ signed permutation on an index set N
of cardinality n. Let 0 ≤ j ≤ n, and let J be the index set {|σk| : 1 ≤ k ≤ j}. Then the restriction

3Note that the same transformation does not give an exact correspondence between the definitions of non-augmented
André-permutations given in [13] and in [22].
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σ
∣∣∣[0,j] is an augmented André∗ signed permutation on the index set J . Furthermore, let 1 ≤ i ≤ j ≤ n

and let K be the index set {|σk| : i ≤ k ≤ j}. Then the restriction σ
∣∣∣[i,j] is a non-augmented André∗

signed permutation on the index set K.

Similarly, let σ = (σ1, . . . , σn) be an non-augmented André∗ signed permutation on an index set N
of cardinality n. Let 1 ≤ i ≤ j ≤ n and let K be the index set {|σk| : i ≤ k ≤ j}. Then restriction
σ
∣∣∣[i,j] is a non-augmented André∗ signed permutation on the index set K.

The proof of Lemma 5.7 follows from the definitions. In particular, Lemma 5.7 gives for j = 1 the
following:

Corollary 5.8 If σ = (0, σ1, . . . , σn) is an augmented André∗ signed permutation, then 0 <Λ σ1. In
other words, every augmented André∗ signed permutation begins with an ascent.

Lemma 5.9 Let σ = (0, σ1, . . . , σn) be an augmented André∗ signed permutation on an index set N
of cardinality n. Assume that x = maxN , and σm = x. Let I be the index set {|σk| : m+1 ≤ k ≤ n}.
Then the restriction σ

∣∣∣[m+1,n] = (σm+1, . . . , σn) is an non-augmented André∗ signed permutation on

the index set I. Moreover, σ
∣∣∣[m+1,n] belongs to the set N±0 (I).

Similarly, let σ = (σ1, . . . , σn) be a non-augmented André∗ signed permutation on an index set N
of cardinality n. Assume that σm = maxΛ{σ1, . . . , σn}. Let I be the index set {|σk| : m+ 1 ≤ k ≤ n}.
Then the restriction σ

∣∣∣[m+1,n] = (σm+1, . . . , σn) is an non-augmented André∗ signed permutation on

the index set I. Moreover, σ
∣∣∣[m+1,n] belongs to the set N±0 (I).

Proof: It is enough to consider the case when σ is augmented. By Lemma 5.7, we know that
σ
∣∣∣[m+1,n] ∈ N±(I). To prove the additional requirement, we will proceed by proof by contradiction.

Thus assume that σm+1 6= minΛ{σm+1, . . . , σn+1}. If σm+1 >Λ σm+2 then σ has a double descent,
namely σm >Λ σm+1 >Λ σm+2, which contradicts the fact that σ is an augmented André∗ signed
permutation. Thus we have σm+1 <Λ σm+2. Since σ

∣∣∣[m+1,n] 6∈ N±0 (I), there exists an index j which
is greater than m+ 1 such that σj <Λ σm+1. We may choose the smallest such j, thus obtaining the
following inequalities: σj−1 >Λ σm+1 >Λ σj . Apply now condition 2 in Definition 5.4, with i = m+ 1.
Thus there exist k such that m+ 1 < k < j and σk >Λ σm. This would contradict that σm = x is the
largest element. Hence, we conclude that σm+1 = minΛ{σm+1, . . . , σn}, and σ

∣∣∣[m+1,n] ∈ N±0 (I). 2

We define the variation U(π) of a signed or unsigned permutation π as U(π) = uS , where S is the
descent set of π and uS is the ab-word defined in Section 1. In the case when π contains no double
descents (e.g., when π is a signed or unsigned, augmented or non-augmented André∗ permutation),
the reduced variation of π, which we denote by V (π), is formed by replacing each ab in U(π) with d
and then replacing each remaining letter by a c. Given a set P of signed or unsigned permutations,
we denote the sums

∑
π∈P U(π) and

∑
π∈P V (π) respectively by U(P) and V (P).
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Remark The variation (respectively reduced variation) of an unsigned André∗ permutation τ is the
reverse of the variation (respectively reduced variation) of the André permutation τ rev obtained by
reversing τ and the underlying linear order Λ. The reverse of a variation is obtained by writing all
monomials involved in the reverse order.

Taking into account this remark, and the fact that reversing all words in a cd-index corresponds
to taking the cd-index of the dual poset, we have the following variation of Purtill’s [22, Theorem 6.1].

Proposition 5.10 Un = V (A ({1, 2, . . . , n})) holds for all n ∈ P.

Let N be an n-element subset of P. As noted after Definition 5.4, a non-augmented signed per-
mutation σ = (σ1, . . . , σn) is a non-augmented André∗ permutation if and only if it is André∗ as an
unsigned permutation on the set {σ1, . . . , σn}, linearly ordered by the restriction of Λ. Clearly σ
belongs to N±0 (N) as well if and only if we have σ ∈ A({σ1, . . . , σn}). Thus from Proposition 5.10 and
from the fact that there are 2|N | ways to choose the signs of σ1, σ2, . . . , and σn, we have the following
corollary.

Corollary 5.11 We have V
(
N±0 (N)

)
= 2|N | · U|N |.

Remark The reduced variation V (σ) of an augmented André∗ signed permutation σ on the set N has
the following recursive description. Assume that N has cardinality n. If σm = x, where x = maxN ,
then

V (σ) =

 V (σ
∣∣∣[0,m−1] ) · d · V (σ

∣∣∣[m+1,n] ) if m < n

V (σ
∣∣∣[0,n−1] ) · c if m = n,

with V (0) = 1. This recursion is well defined since σ
∣∣∣[m+1,n] belongs to the set N±0 ([m + 1, n]) the

reduced variation of which is described in Corollary 5.11.

The following description of the polynomials Un,k is analogous to Stanley’s [26, Conjecture 3.1]
proved in [19, Theorem 2].

Theorem 5.12 Let An,k denote the set {τ ∈ A({0, 1, . . . , n − 1}) : τn ∈ {n − 1, n − 2, . . . , n − k}}.
Then we have Un,k = V (An,k).

Proof: Let us denote A({1, 2, . . . , n − 1}) by An+2. It is sufficient to show that V (An+2,k) satisfies
the recursion formula given in Theorem 4.2 for 2 ≤ k ≤ n. In fact, we may use the recursion formula
to show our theorem by induction, where our induction basis is formed by the following two results:

(i) Proposition 5.10 which implies our statement for Un,n−1 = Un and V (An,n−1) = V (An),

(ii) the relations Un+1,1 = Un · c and V (An+1,1) = V (An,1) · c which may be easily seen directly.

24



We use the recursive description given in Proposition 5.2 to show the recursion formula for V (An+2,k).
Assume we are given a permutation τ = (0 = τ0, τ1, . . . , τn+1) ∈ An+2,k. Let us count the letters
which occur before the maximum letter n+1 in τ : let i denote the number of such letters from the set
{n−k+2, n−k+3, . . . , n}, let j count the number of such letters from the set {1, 2, . . . , n−k+1}. Then
we have τi+j = n+1. In the case when i ≤ k−2 and j ≤ n−k holds, we have that τ belongs to An+2,k

if and only if (0 = τ0, τ1, . . . , τi+j) is an augmented André∗ permutation on {0 = τ0, τ1, . . . , τi+j} and
(τi+j+1, . . . , τn+2) is an augmented André∗ permutation on {τi+j+1, . . . , τn+2} ending with one of the
k − i− 1 largest letters. Thus the total reduced variation of such permutations is

∑
i≤k−2
j≤n−k

(
k − 1
i

)(
n− k + 1

j

)
· V (Ai+j+1) · d · V (An−i−j,k−i−1). (5.1)

When i = k−1 then n+1 must be the last letter, and the total reduced variation of such permutations
is V (An+1) · c. Finally, when j = n − k + 1 and i ≤ k − 2 then there is no restriction on the ending
letter of (τi+j+1, . . . , τn+2), and the total reduced variation of such permutations is

∑
i≤k−2

(
k − 1
i

)
· V (Ai+n−k+2) · d · V (Ak−i−1). (5.2)

Adding the reduced variations (5.1) and (5.2) to V (An+1) · c we obtain the desired expression for
V (An+2,k). 2

Remark Observe that, in terms of “usual” André permutations, Theorem 5.12 expresses the poly-
nomials Un,k as the reduced variation of augmented André permutations starting with given letters,
while Stanley’s [26, Conjecture 3.1] (shown in [19, Theorem 2]) partitions the augmented André per-
mutations depending on their second to last letter.

Proposition 5.2 has the following signed analogue.

Proposition 5.13 There exists a bijection between the two sets

A±([n+ 1]) and
·⋃

I+J=[n]

A±(J)×N±0 (I),

where all the unions are disjoint and × is the Cartesian product.

Proof: We break the augmented André∗ signed permutations at the point where the largest element
n+ 1 occurs. By doing so, we have the following map by Lemma 5.7:

F : A±([n+ 1]) −→ A±([n])
·
∪

·⋃
I+J=[n]
I 6=∅

A±(J)×N±0 (I).

This map is well defined because of Lemmas 5.7 and 5.9. To see that F is bijective, it is enough to prove
that F has an inverse. Given σ′ = (0, σ1, . . . , σm−1) ∈ A±(J) and σ′′ = (σm+1, . . . , σn+1) ∈ N±0 (I),
let σ = (σ′, n + 1, σ′′). It is easy to see that σ satisfies conditions 1 and 3 in Definition 5.4. To show
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that σ also satisfies condition 2, it is enough to consider the following two cases. First, when i < m
and m < j, let k = m in condition 2. The remaining case is when i − 1 = m and m < j. However,
this case will not occur since σ′′ belongs to N±0 (I). Hence σ is an augmented André∗ permutation,
and lies in the set A±([n+ 1]). Thus we conclude that F is a bijection. 2

Theorem 5.14 We have Vn = V (A±([n])).

Proof: It is enough to show that V (A±([n])) satisfies the same recurrence as the one given for Vn
in Proposition 4.1. This formula will follow by the bijection given in Proposition 5.13. Summing the
reduced variation over A±([n+ 1]) we find

V
(
A±([n+ 1])

)
= V

(
A±([n])

)
·c+

∑
I+J=[n]
I 6=∅

V
(
A±(J)

)
·d·V

(
N±0 (I)

)
. 2

Finally, we arrived at a description of the polynomials Vn,i,j in terms of reduced variation of signed
augmented André∗ permutations.

Theorem 5.15 Let N ⊂ P be an n-element set and Λ a linear order on N∪−N∪{0} such that 0 <Λ i
and −i <Λ i for all i ∈ N . Assume that A and B are disjoint subsets of N such that A ∪ B ∪ −B is
an upper segment in N ∪−N , and all the elements of A are larger than the elements of B ∪−B with
respect to Λ. Let us denote |A| by i and |B| by j, where we assume i > 0 or j = n. Then Vn+1,i,j is
the total reduced variation of all those signed augmented André∗-permutations with respect to Λ which
end with a letter from A ∪B ∪ −B.

Proof: Observe first that in the case when j = n, we must have i = 0, Vn+1,0,n = Vn and our theorem
reduces to Theorem 5.14. Thus we may assume i > 0. For i = 1 and j = 0 we have n ≥ 2 and
Vn+1,1,0 = Vn · c, hence the statement is again an easy consequence of Theorem 5.14. Thus we only
need to consider the case when i > 0 and i+ j ≥ 2, and so n ≥ 2. In order to get a better match with
the notation of Theorem 4.3, we denote from now on |N | − 1 by n. Now it is sufficient to show that
the reduced variation polynomial V ({σ = (0 = σ0, σ1, . . . , σn+1) : σ ∈ A±(N), σn+1 ∈ A ∪B ∪ −B})
satisfies the formula given in Theorem 4.3.

Suppose we are given an augmented signed André∗ permutation σ = (0 = σ0, σ1, . . . , σn+1) with
σn+1 ∈ A∪B ∪−B. Assume i∗ letters of A, j∗ letters of B and k∗ letters of C def= N \ (A∪B) occur
before the letter n+ 1. Among the letters after n+ 1 there are i0 belonging to A and having positive
sign, and i1 letters from A occur with a negative sign. Thus we have i = i0 + i1 + i∗ + 1. There are
j − j∗ letters of B and n + 1 − i − j − k∗ = k − k∗ letters of N \ (A ∪ B) after n + 1 = σi∗+j∗+k∗ .
Let us denote the intersection of {|σ0|, |σ1| . . . , |σn+1|} \ {|σ0|, |σ1| . . . , |σi∗+j∗+k∗ |} with A, B, and C
respectively by A1, B1, and C1 respectively. Clearly we have |B1| = j − j∗ and |C1| = i1 + k − k∗.
Observe that A1 ∪ B1 ∪ −B1 is an upper segment in A1 ∪ B1 ∪ C1 ∪ −A1 ∪ −B1 ∪ −C1 with respect
to the restriction of Λ.
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Consider first those σ’s for which both i0 + j− j∗ and i1 +k−k∗ are positive. By Proposition 5.13,
σ is an augmented signed André∗ permutation, ending with a letter from A ∪ B ∪ −B if and only if
we have (0 = σ0, σ1, . . . , σi∗+j∗+k∗−1) ∈ A± ({|σ1|, . . . , |σi∗+j∗+k∗ |}) and (σi∗+j∗+k∗+1, . . . , σn+1) ∈
N±0 ({|σi∗+j∗+k∗+1|, . . . , |σn+1|) where σn+1 must belong to A1 ∪ B1 ∪ −B1. We observed in the
proof of Corollary 5.11 that (σi∗+j∗+k∗+1, . . . , σn+1) ∈ N±0 ({|σi∗+j∗+k∗+1|, . . . , |σn+1|) is equivalent
to (σi∗+j∗+k∗+1, . . . , σn+1) ∈ A ({σi∗+j∗+k∗+1, . . . , σn+1). Thus by the Theorems 5.14 and 5.12 the
total reduced variation of all such σ’s is

∑
i0,i1,i∗,j∗,k∗
i0+j−j∗>0
i1+k−k∗>0

(
i− 1
i0 i1 i∗

)(
j

j∗

)(
k

k∗

)
· 2j−j∗+k−k∗ · Vi∗+j∗+k∗+1 · d · Un−i∗−j∗−k∗,i0+j−j∗ (5.3)

Observe that the factor 2j−j∗+k−k∗ comes from the number of possible signings of the set B1 ∪ C1.

Consider next the case i0 + j − j∗ = 0. Then n + 1 must be the last letter, i.e., we must have
i∗ + j∗ + k∗ = n+ 1. The contribution of all such σ’s is Vn+1 · c by Theorem 5.14.

Assume finally that i0 + j − j∗ is positive but i1 + k − k∗ is zero. Then there is no restriction of
the last letter of σ, and the contribution of all such σ’s is

∑
i0,j∗

i0+j−j∗>0

(
i− 1
i0

)(
j

j∗

)
· 2j−j∗ · Vn+2−i0+j∗−j · d · Ui0+j−j∗ (5.4)

Adding the sums (5.3) and (5.4) to Vn+1 · c we obtain the desired formula for Vn+2,i,j . 2
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