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Abstract

Let S[i, j] denote they-Stirling numbers of the second kind. We show that the determinant of the
matrix (S[s +i + j, s + jDogi, j<n 1S given by the produoj(s+g+l)_(5) 510 s+ 1t [s +am.
We give two proofs of this result, one bijective and one based upon factoring the matrix. We also
prove an identity due to Cigler that expresses the Hankel determingnéxjionential polynomials
as a product. Lastly, a two variable version of a theorem of Sylvester and an application are presented.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The Stirling numbers of the second kirffiz, k), count the number of partitions of an
element set inté blocks. They have a naturatanalogue called thg-Stirling numbers of
the second kind denoted 8yn, k]. They were first defined in the work of Carlitz [4]. A lot
of combinatorial work has centered around jianalogue, the earliest by Milne [12,13];
also see [6,9,19,20].

The goal of this article is to evaluate determinants involvipgtirling numbers
and give bijective proofs whenever possible. Our tool is the juggling interpretation of
g-Stirling numbers. Juggling patterns were introduced and studied by Buhler et al. [2].
More combinatorial work was done in [3]. Together with Readdy, the author introduced
a crossing statistic in the study of juggling patterns to obtajnramalogue [8]. Notably,
Ehrenborg—Readdy give an interpretation of th&tirling numbers of the second kind
S[n, k] in terms of juggling patterns. This combinatorial interpretation is useful in
obtaining identities involving theg-Stirling numbers; see for instance Theorem 3.3. This
interpretation ofy-Stirling numbers is equivalent to the rook placement interpretation of
Garsia and Remmel [9].
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In Section 3 we evaluate the determinantdgt+i + j, s + j]) and give two different
proofs. The bijective proof is based upon the bijection in [7], whereas the second proof uses
the LU-decomposition of the matrix. Similarly, in Section 4 we give a bijective proof of
a result of Cigler that expresses the Hankel determinant of tbeponential polynomials
en[x] as a product [5]. In the last section we extend a result of Sylvester to evaluate the
determinantdeésS(s +i + j,s + j)/(s +i + j)).

2. g-analogues

We summarize the basig-analogue notations. For a non-negative integer, I¢t]
denote the sum % ¢ + - - - + ¢~ L. Theg-factorial [n]! is the producfl] - [2] - - - [n]. We
have that

> ™ =[nl,
o

whereo ranges over all permutations onelements. The&saussian coeﬁicien@’] is

defined by
n| [n]!
k| [k -[n—k]V

It has the following combinatorial interpretation. Define the rank of &set(s1, s2, ..., sk}
of positive integers of cardinality to be the difference(S) =s1 +s2+---+ s — 1 —
2 — ... —k. Then the Gaussian coefficient is given by

nl_ ()
[k} = ijqp :

where the sum ranges over all subsetsf {1, ..., n} of cardinalityk.

The Stirling number of the second kirfin, k) is the number of partitions of a set
of cardinalityn into k blocks. Theg-Stirling numbers of the second kirzde a natural
extension of the classical Stirling numbers. The recursive definition ofytstirling
numbers is

S[n, k) =g* 1. Sln— 1,k — 1]+ [k] - S[n — 1, k],

wheren,k > 1. Whenn = 0 or k = 0, defineS[n, k] = 8,.x. The ¢g-Stirling numbers
are well-studied; see for instance [6,8,9,11-13,19,20]. There are several combinatorial
interpretations of the-Stirling numbers. We now introduce the interpretation of Ehrenborg
and Readdy [8].

Let = be a partition of{l,...,n} into k blocks, that is,m = {B1,..., B¢}. TO
this partition7 we associate a juggling pattern consistingkopaths with each path
corresponding to a block of the partition. Ttk path touches down at the nodes belonging
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Fig. 1. The juggling pattern associated with the partitios {{1, 3, 7}, {2}, {4, 5}, {6, 8}}. Observe that there are
10 crossings.

to the elements in bloc;. The juggling pattern is drawn so that arcs do not cross each
other multiple times and that no more than two arcs intersect at a point. See Fig. 1 for
the juggling pattern corresponding the partitioa- {{1, 3, 7}, {2}, {4, 5}, {6, 8}}. Let cross

(7r) be the number of crossings in the juggling pattern associated with the pattitide

have the following interpretation of thg Stirling numbers of the second kind [8].

Theorem 2.1 (Ehrenborg—ReaddyY.he ¢-Stirling number of the second kinfin, k] is
given by

Stn, k1= g%,
b/g

where the sum ranges over all partitionsof the sef{1, ..., n} into k blocks.

One of the major tools in studying juggling patterns are juggling cards. The juggling
cardC; is the picture that consists of one node @nghaths, where th@ + 1)st path from
the bottom touches down at the node and then continues as the lowest path. The juggling
cardsCp, C1, C2, andCs are displayed in Fig. 2. Observe that the juggling c@rchas
exactlyi crossings.

Let 7 be a partition on the sdfl,...,n}. For S a subset off1,...,n}, define the
restricted partitionr |s to be the partitiont|s = {B N S: B € =, BN S # #}. Moreover,

oY

Fig. 2. The four juggling card€g, C1, C2, andCs.
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Seainakavatinina

Fig. 3. The partitiont = {{1, 3, 7}, {2}, {4, 5}, {6, 8}} represented by juggling cards.

for 1 <i < n, we will definec; so that we can represent our partition as the juggling cards
Cey, ..., Cq,. To do this, letj be the maximum of the set

{0} U {h: h < i, h andi belong to the same block af}.

Let ¢; be the number blocks in the restricted partitiof; 1. ;1. It is straightforward
to verify that the partitionr is given by the juggling card€,,, ..., C,. For instance, the
partitiont = {{1, 3, 7}, {2}, {4, 5}, {6, 8}} is represented by the juggling cards, C1, C1,
C2, Co, C3, C2, andC1 in Fig. 3. Note that the sum of the indices of the cards is the number
of crossings.

Observe thaty ® always divides theg-Stirling number S[n, k]. Sometimes it is
convenient to work with the modifieg-Stirling numberS[x, k] defined by

~

k
Stn,k1=q~@ - S[n, k1.
The modifiedq-Stirling number of the second kinE[n, k] has the natural interpretation
when we omit the incoming paths and then count the crossings in the remaining pattern. Let

crosgn) denote the number of crossings in such a pattern, thatdsgr) = crosgr) —
(5). Thus we have

Stn k=) 505

e

3. Thedeterminant of ¢g-Stirling numbers

We now consider the determinant of the matrix consisting-&tirling numbers. We
present two proofs for evaluating this determinant.

Theorem 3.1. Letn ands be non-negative integers. Then we have

det(Sts +i+ /.5 + j1)ogi j<n = q(méﬂ)*(é) 510 s+ 1t [s + ]
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Proof. Let T denote the set of alln + 2)-tuples (o, 7o, 71, ..., 7,) Whereo is a
permutation on the s€D, 1,...,n} andx; is a partition of the setl,...,s +i + o (i)}
into s + o (i) blocks. Expanding the determinant we have

de(S[s+i+j,s+ j])ogi,jgn = Z (—1)7 . gCTOSET0)++CrosEm,)

Let (o, 7o, ..., ;) be in the sefl'. Let X; be the sef{1,...,s + i} andY; the set
{s+i+1,...,s+i+0o(i)}. Define the integet; = |;|x,| —s. Thatis,a; +s is the number
of blocks inz; that intersect non-trivially the sef;. From this we conclude that < i.
Since the total number of blocksist o (i) we also obtain that; < o (i). Finally, observe
that the number of blocks that are contained in th&’set(s +o (i) — (a; +5) =0 (i) —a;.
This number must be less than or equal to the cardinality of thE sethich iso (i). Thus
we conclude thad; > 0.

Let Ty consist of all tuplego, o, ..., m,) in T such that they;’s are distinct. Let us
now consider those tuples that arefin Observe that the inequalities < i anda; < o (i)
imply thata; =i = o (i) for all indicesi. Hence the partitiomr; consists ofs + i blocks
with each block containing one element from the gkt .., s + i}. Observe that such
a partition is represented by the juggling carts C1, ..., Cs+i—1, Cqy, - - ., Co;, Where
0<ay,...,0 <s+i—1.Thus summing to the power of the crossing statistic crog9
over all such possible partitions, we have

chros$n;) _ q(sy) s 4.

TTi

Hence we have

n .
Z (_1)a .qcros$no)+~~~+cros$nn) _ l—[q(wzﬂ) s+ i]i. (3.1)

(0,70, ....tn) €T i=0

Let 7> be the complement of1, that is, 7> = T — T1. We define a sign-reversing
involution on T> as follows. For(o, 7o, ..., ;) In T> we know that there exists a pair
of indices(j, k) such thata; = ay. Let (j, k) be the least such pair in the lexicographic
order. Lets’ be the permutatioa’(j) = o (k), o' (k) =0 (j) ando’(i) = o (i) fori # j, k.
Clearly,(—1)" = —(—1)?. Moreover, letr/ = r; for i # j, k.

Assume thatr; is constructed by the juggling card¥1), ..., D(s + j), D(s + j + 1),

..., D(s+ j+0o(j)) andmny is constructed by the card&1), ..., E(s +k), E(s +k+ 1),
..., E(s + k+o(k)). We now define two new partitions;. andrn;. Let n]’. be constructed
by the juggling cardsD(1),...,D(s + j),E(s +k+1),...,E(s + j + o(k)) and
constructed by the cards(1), ..., E(s +k),D(s +j+1),..., D(s + j + o (j)).

Notice that we need to add (k) — o(j) paths at the top of each of the cards
D(),..., D(s + j) and similarly, remover (k) — o (j) paths from the top of the cards
EQ),..., E(s + k) in order that each card has the same number paths as blocks in the
partition.
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The map(o, 7o, ..., ) = (o', 7}, ..., m,) on T defines a sign-reversing involution.
Moreover, the quantity crogsg) + - - - + crossm,) is invariant under the involution. Thus
the determinant is given by the productin Eq. (3.1

We now present a second proof of Theorem 3.1. It requires some more notation, but
as byproduct we obtain identities fgrStirling numbers. For non-negative integersk
andh, let F" (k, h) be the collection of all sequencés, ...,c;) € {0, ...,k — 1}" such
that in the juggling patteroC,,, ..., C.,) each of the: highest paths at time 0, that is, the
paths labele@ —h + 1,k — h+ 2, ...k, touch down at one of nodes{f, 2, ..., n}. Let
f"[k, h] denote the-analogue of the cardinality of the st (k, k), that is,

fn[k,]’l] — Z qC1+"'+Cn.

(c1,...,cn) €FM (k)

Lemma 3.2. The polynomialf"[k, k] is given by

h
: j h
[k h=Y (=17 @) u k= 1"

j=0

Proof. The expressiofk]" g-enumerates all sequences:gtiggling cards with each card
havingk paths. We will enumerate this set in a second way to obtain a different expression
from which the lemma will follow.

Observe thay” [k — j, h — j] enumerates the collection of patterns wherejthighest
paths do nottouch down, but the- j next highest are forced to touch down. We generalize
this observation as follows. Lef = {i1 <i» < --- < i} be a subset ofl, ..., h}. The
collection of patterns where thig i», .. ., i; highest paths do not touch down but the paths
in{1,...,h} —{i1, i2,...,i;} dotouch down is counted by

gttt T2 e — ok — j1= g fk— b — .
Summing over all subset$of cardinality j, we have
" Th
k"= H k= j b= 1.
j=0

Applying theg-inversion formula, see [10, Eq. (5)], the lemma follows

Theorem 3.3. Theg-Stirling numberS[m + n, k] can be expressed by

fn[k,k—l]
k=]

3

Sim +n, k] = ZS[m, il

wherei ranges betweemax(0, k — n) andmin(m, k).
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Proof. Consider a partitionr of {1,...,m + n} into k blocks. Letcy, ..., cuyn be the
corresponding sequence. When restricting this partition to th¢lset., m}, that is, to
consider the sequenee, ..., ¢,,, We obtain a partition inté blocks. The remaining part
of the sequence;,+1, ..., cm+n COrresponds to a pattern where the- i highest paths
touch down. However, thede— i paths touch down in order of height. Thus we need to
divide the termf™ [k, k — i] with the g-factorial[k — i]! to take the order of the — i paths
in account.

Finally observe that we need<Qi < m, i <k, andk — i < n to make the terms in the
sum non-zero. O

Second proof of Theorem 3.1. By Theorem 3.3 we have witm =s + i, n = j, and
k =5+ jl

s+min(i, j) ; . .
o . . flls+j,s+j—al
Sstitjistjl= 3, Sks+iel ==y
o=s
min(, j) j .
pry [ — Bl

This shows that the matriM = (S[s +i + j, s + jDoxi, j<n factorsinto a lower triangular
matrix L = (S[s + i, s + Bo<i,p<n @nd an upper triangular matrld = (f/[s + j, j —
B1/1j — B1Dogg, j<n- Hence the determinant & is the product of the elements on the
diagonals oL andU. Hence

detM) =[] Sts +i.s+i1- fils +i,01=[[¢(Z) - [s+i1. O
i=0 i=0

4. The Hankel determinant for g-exponential polynomials

The exponential polynomials, (z) are defined by, (z) =Y _o S(n, k) - 2 =" 217
wheren ranges over all partitions of anelement set. Observe that(1) is thenth Bell
number. The Hankel determinant of the Bell numbers and more generally, the exponential
polynomials have been considered in several articles [1,7,14-18]. Cigler [5] obtained the
g-analogue of this Hankel determinant, namely a similar factorization for the Hankel
determinant of the -exponential polynomials. We present two proofs of his identity. The
first proof is an extension of the bijective proof appearing in [7].

Define theg-analogue ot (z), theg-exponential polynomialdy

n
anle) = Sln,k]-2F =" g0 I,
b/g

k=0
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Theorem 4.1 (Cigler). The Hankel determinant of thgexponential polynomials is
det(@; [Z])Ogi,,/gn — q("gl) O[]0 - [t - 2 (3D,

Proof. Let T denote the set of all: + 2)-tuples(o, 7o, 71, ..., m,) wWhereo is a permu-
tation on the set0, 1, ..., n} andr; is a partition of the setl, ...,i 4+ o (i)}. Expanding
the determinant we have

deféiyjlel)oe; jcy = D (=17 qOOSEOT -G0S ol

(0,70, .-, mn)eT

For (o, 7o, ..., m,) in T definea; to be the number of blocks im; that intersect non-
trivially both {1, ...,i} and{i + 1,...,i + o(i)}. It is clear from both intersections that
a; <iandag; <o(i).

Let Ty consist of all tupleqo, 7o, ..., ;) in T such that thes;’s are distinct. Let
us now consider thoses tuples that areTin Observe that the inequalities < i and
a; < o(i) imply thata; =i = o (i) for all indicesi. Hence the partitionr; consists
of i blocks with each block containing one element frdi...,i} and one from
{i+1,...,2-i}. There are! such partitions. They are described by the juggling cards
Co,...,Ci—1,Cqq, ..., Co;_;, Wherei < o; <n— 1. Thus summing to the power of the

crossing statisti€rosgrr;) over all such possible partitions, we havey”, ¢S .
il = g @ . [i]!- z'. Thus we conclude that

Z (—1)° .qﬁ6§$no)+~~+ﬁ6§$nn) . glmol++

(0,70,....7tn)€T1

n+1 n+1

=q¢s) o117 [nr - 22

Now we define a sign-reversing involution on the gt For (o, 7o, ..., 7,) in T2 let
(j, k) be the least such pair in the lexicographic order suchdhat a;. Defines’ andrn/
fori # j, k as in the first proof of Theorem 3.1. We need to define the partitit}rmldn,g.

Let a denotea; = ax. Fori = j, k, let X; be the set{1,...,i} andY; be the set
{i+1,...,i +0(i)}. Letk; denote the partitiotr; restricted to the seX; and; denote
the partition restricted td@;. In each of these two partitions mark theblocks that are
restrictions of the blocks having elements in bathandy;.

Definer’, to be the join of the partitions; andx; on the setX; U Y; where we join
thea marked blocks ok ; with thea marked blocks of.;. Merge thez blocks in the order
described by the partitiom;. Definerr; similarly. Itis clear thaiz ;| 4 |7x| = I”.;'I + |l
It remains to show that

Crossr ;) + Crossmy) = c’rbgs{nj’-) + Crosgr;). (4.1)
We prove this identity by carefully analyzing the types of crossings in the partition

wherei = j, k. Let x; be the number blocks of; that are not marked and similarly
definey;. Let o; be the number of crossings occurring betweendhgaths leaving the
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Fig. 4. Sketch of the partition; in the proof of Theorem 4.1. Observe thet=2, x; = 2, y; = 3. The crossing
displayed are counted ly; =1, 8; =2,y; =4, andx; - y; =6.

set X; and arriving at the seY;. Let 8; be the number of crossings occurring between
the x; paths leaving the seX; going upwards and the paths continuing to the séf.
Symmetrically, lety; be the number crossings occurring betweenythincoming paths
and thea continuing paths. We have now taken into account all the crossings tifat is,
Crosgm;) = Crossx;) + crossi;) +x; - vi +o; + Bi + yi. See Fig. 4 for an example. Since
(“5) + (“8) + xi - yi — (“T5) = (9), the modified crossing statistic satisfies

a

Crosgm;) = Crossk;) + Crossga;) + (2

)+ot,~+ﬁ,'+y,'. (4.2)

Now by the definition oﬁr; we have that
o~ o~ o~ a
cross{nj’.) = Cross« ) + Crossix) + <2) +aj + Bj + Vi

By adding this equation to the symmetric one #grEq. (4.1) follows. Hence we obtain
a sign-reversing involution that keeps the necessary statistics invariant, thus proving the
expansion. O

The next proof is similar to Cigler’s proof, namely the objective is to obtaihRb-
decomposition of the matrix. However, we are able to obtain this factorization in a purely
combinatorial manner. To simplify the notation let us introduce the linear opebgtoy

f@—flg-2)
Dy(f@)=—F——. 4.3
q (f ) (1 _ q) .z ( )
This is theg-analogue of the derivative. For our purposes it is enough to observe that
Dy(z")=[n]- "1

Second proof of Theorem 4.1. Let X be the setl,...,i} andY theseti +1,...,i+ j}.

We determine the number of ways to choose a partitiorXan Y. First choose a non-
negative integet. Then choose a partition on X with a + x blocks, and a partition

on Y with a + y blocks. Selecu: blocks of x anda blocks of ». This can be done in
(“*¥) - (“77) ways. There are! ways to match these selected blocks. We then obtain a

partitionsr on X U Y with a + x + y blocks.
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The crossing statistic of the partition is described by Eq. (4.2) except without any
subscripts. However, notice that when summing over all the ways to obtain the pattition
from « andA, thea-crossings will be counted bjy:]!. Similarly, the 8-crossings will be
counted by{**] and they-crossings will be counted by *]. Thus we have

giﬂ.[z]zzzzg[i,a_,_x].§[j’a+y].q(‘§).[a]!,|:a+Xj| ) [a+yi| L patxty

a>0x>0y>0 “ “
_ &) . ,a
:Z(ZS[i,a+x]' la ] 'Zx> AT
S\ [x]! [a]!
_ |
x (ZS[j,a—i—y]' [a—i—'y]. ‘zy)
>0 ]!
ar~ g®@ .24 af~
= ZDq (éilz]) - [a]! - DG (é12]).

a>0

Hence the Hankel matrixe; ;[z])o<i, j<» factors into a lower triangular matrik =

(Dg (@ilzD))o<i.a<n, @ diagonal matri>D havingq@ -z%/[a]! as its(a, a) entry and an
upper triangular matrixJ = L*. Thus the determinant of the Hankel matrix is the product
of the diagonal elements of these three matrices, that is,

Q. N
Ei]!z :H[i]y.q(z) o O
i=0

[0}tz 2
i=0

5. An extension of a theorem of Sylvester

On the space of infinitely differentiable functions of two variabtesnd y, define the
operatolT,, by

8i+jf >
3x’8y/ Ogl)]gn

T,(f) = det(
The operatof;, satisfies the following identity.
Theorem 5.1. The operatord,, satisfy the functional equation
T1(Tu(f)) = Tu-1(f) - Tora ().

Proof. Let M denote then +2) x (n+ 2)-matrix (3" 7/ £/3x'8y/)o<;, j<n+1. FOrS andT
subsets of0, 1, ..., n + 1} having the same cardinality lets 7 denote the minor with the
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rows indexed by the set+1— S ={n+ 1—s: s € S} removed and the columns indexed
by n 4+ 1— T removed. Applying the Deshanot—Jacobi adjoint matrix theorem, we have

M{0},{0} - M1{1},{1)} — M{0},{1) - M{1},{0} = /"{0,1},{0,1} - My, @
It is now straightforward to verify that this identity is the desired resutt

Corollary 5.2 (Sylvester) Define the operatos, by S,(g) = det(d' ™/ /ax'/ g)o<i j<n-
Then the operators,, satisfy the functional equation

51(81(8)) = Sn—1(8) - Sut1(2)-

Proof. Apply Theorem 5.1 to the functiofi(x, y) = g(x + y) andthensey =0. O

This result was used by Radoux in one of his proofs of the Hankel determinant of the
exponential polynomials [16]. Namely, by induction and Corollary 5.2 comgite),
where

gr)=exp(z- (€ = 1))=Y enz)-x"/n!

n>0

and then set =0.
As an application of Theorem 5.1, we evaluate the following determinant.

Theorem 5.3.

q (S(s—lri—l—j,s—l—j)) _ 25-(n+1)
(s+i+ ) o<ij<n  CON- 25+ (25 + 20!

wherek!! denotes the double factorial- (k — 2) --- 2.

Proof. In the expression exp - (e* — 1)) = Zog;gk S(k, j) - x*/k!- y/ substitutey/x
for y to obtain

exply - (€ —1/x)= > Stk j)/kl-x*T I

0<j<k

= SG+j, D/G+Dx ey
0<i,j

By Theorem 5.1 and by induction enit is straightforward to show that

3 de —1\(3) /g5 \ntl
Ao (S PN
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wheref(x, y) =exp(y - (" — 1)/x). Now setx = y =0 in Eq. (5.1). We obtain that

det(S(s +i+j,s+ /(s +i+ NIil- (s + ) og; o =0 11 onl- 1/2)("3).

Divide each side by 0 1!---n!-s!- (s +1)!--- (s + n)! and the result follows. O

6. Concluding remarks

Cigler also obtained expressions for the two shifted Hankel determinants:

det(@i s 41ll)oc; o, =4 (%) 101 [0t - 25,

n+1
n n 1 !
det(éiJrHZ[Z])ogi,jgn =4 ). [0]'-[1]!---[n]! - z€ ). ( E q(g) k. [n[:]'] >;
k=0 ‘

see [5, Satz 1]. Can bijective proofs be found for these identities? Moreover, considering
the otherg-analogue of the exponential polynomials, namely

n
enle) = Sln,k]-2F =" om0 I,
k=0 T

he also has expressions for the Hankel determinant and the two shifted Hankel determinants
of e, [z]; see [5, Satz 2]. Again it is natural to ask for bijective proofs. However, this might
be more challenging since in these cases the determinantis equal to a product whose factors
contain terms with negative signs.

One generalization of the-Stirling numbers is they, ¢-Stirling numbers [6,20]. Can
any of the results appearing in this paper be extended to them?

We ask if there is @-analogue of Theorem 5.3. More interestingly, is there a natural
g-analogue of the two variable Sylvester's Theorem 5.1. One suggestion is to uge the
analogue of the derivative given in Eq. (4.3).
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