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Abstract

Let S[i, j ] denote theq-Stirling numbers of the second kind. We show that the determinant o

matrix (S[s + i + j, s + j ])0�i,j�n is given by the productq(
s+n+1

3 )−(s3) · [s]0 · [s + 1]1 · · · [s+n]n.
We give two proofs of this result, one bijective and one based upon factoring the matrix. W
prove an identity due to Cigler that expresses the Hankel determinant ofq-exponential polynomials
as a product. Lastly, a two variable version of a theorem of Sylvester and an application are pre
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The Stirling numbers of the second kind,S(n, k), count the number of partitions of ann-
element set intok blocks. They have a naturalq-analogue called theq-Stirling numbers of
the second kind denoted byS[n, k]. They were first defined in the work of Carlitz [4]. A lo
of combinatorial work has centered around thisq-analogue, the earliest by Milne [12,13
also see [6,9,19,20].

The goal of this article is to evaluate determinants involvingq-Stirling numbers
and give bijective proofs whenever possible. Our tool is the juggling interpretatio
q-Stirling numbers. Juggling patterns were introduced and studied by Buhler et a
More combinatorial work was done in [3]. Together with Readdy, the author introd
a crossing statistic in the study of juggling patterns to obtain aq-analogue [8]. Notably
Ehrenborg–Readdy give an interpretation of theq-Stirling numbers of the second kin
S[n, k] in terms of juggling patterns. This combinatorial interpretation is usefu
obtaining identities involving theq-Stirling numbers; see for instance Theorem 3.3. T
interpretation ofq-Stirling numbers is equivalent to the rook placement interpretatio
Garsia and Remmel [9].

E-mail address:jrge@ms.uky.edu.
0196-8858/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-8858(03)00029-0
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In Section 3 we evaluate the determinant det(S[s + i + j, s + j ]) and give two differen
proofs. The bijective proof is based upon the bijection in [7], whereas the second proo
the LU-decomposition of the matrix. Similarly, in Section 4 we give a bijective proo
a result of Cigler that expresses the Hankel determinant of theq-exponential polynomial
ẽn[x] as a product [5]. In the last section we extend a result of Sylvester to evalua
determinant det(S(s + i + j, s + j)/(s + i + j)!).

2. q-analogues

We summarize the basicq-analogue notations. Forn a non-negative integer, let[n]
denote the sum 1+ q + · · · + qn−1. Theq-factorial [n]! is the product[1] · [2] · · · [n]. We
have that ∑

σ

q inv(σ ) = [n]!,

whereσ ranges over all permutations onn elements. TheGaussian coefficient
[
n
k

]
is

defined by [
n

k

]
= [n]!

[k]! · [n− k]! .

It has the following combinatorial interpretation. Define the rank of a setS = {s1, s2, . . . , sk}
of positive integers of cardinalityk to be the differenceρ(S) = s1 + s2 + · · · + sk − 1 −
2− · · · − k. Then the Gaussian coefficient is given by[

n

k

]
=
∑
S

qρ(S),

where the sum ranges over all subsetsS of {1, . . . , n} of cardinalityk.
The Stirling number of the second kindS(n, k) is the number of partitions of a s

of cardinalityn into k blocks. Theq-Stirling numbers of the second kindare a natura
extension of the classical Stirling numbers. The recursive definition of theq-Stirling
numbers is

S[n, k] = qk−1 · S[n− 1, k − 1] + [k] · S[n− 1, k],

wheren, k � 1. Whenn = 0 or k = 0, defineS[n, k] = δn,k . The q-Stirling numbers
are well-studied; see for instance [6,8,9,11–13,19,20]. There are several combin
interpretations of theq-Stirling numbers. We now introduce the interpretation of Ehrenb
and Readdy [8].

Let π be a partition of{1, . . . , n} into k blocks, that is,π = {B1, . . . ,Bk}. To
this partitionπ we associate a juggling pattern consisting ofk paths with each pat
corresponding to a block of the partition. Theith path touches down at the nodes belong
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1 2 3 4 5 6 7 8

Fig. 1. The juggling pattern associated with the partitionπ = {{1,3,7}, {2}, {4,5}, {6,8}}. Observe that there ar
10 crossings.

to the elements in blockBi . The juggling pattern is drawn so that arcs do not cross e
other multiple times and that no more than two arcs intersect at a point. See Fig
the juggling pattern corresponding the partitionπ = {{1,3,7}, {2}, {4,5}, {6,8}}. Let cross
(π) be the number of crossings in the juggling pattern associated with the partitionπ . We
have the following interpretation of theq-Stirling numbers of the second kind [8].

Theorem 2.1 (Ehrenborg–Readdy).Theq-Stirling number of the second kindS[n, k] is
given by

S[n, k] =
∑
π

qcross(π),

where the sum ranges over all partitionsπ of the set{1, . . . , n} into k blocks.

One of the major tools in studying juggling patterns are juggling cards. The jug
cardCi is the picture that consists of one node andk paths, where the(i + 1)st path from
the bottom touches down at the node and then continues as the lowest path. The j
cardsC0, C1, C2, andC3 are displayed in Fig. 2. Observe that the juggling cardCi has
exactlyi crossings.

Let π be a partition on the set{1, . . . , n}. For S a subset of{1, . . . , n}, define the
restricted partitionπ |S to be the partitionπ |S = {B ∩ S: B ∈ π,B ∩ S �= ∅}. Moreover,

� � � �

Fig. 2. The four juggling cardsC0, C1, C2, andC3.
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Fig. 3. The partitionπ = {{1,3,7}, {2}, {4,5}, {6,8}} represented by juggling cards.

for 1 � i � n, we will defineci so that we can represent our partition as the juggling c
Cc1, . . . ,Ccn . To do this, letj be the maximum of the set

{0} ∪ {h: h < i,h andi belong to the same block ofπ}.

Let ci be the number blocks in the restricted partitionπ |{j+1,...,i−1}. It is straightforward
to verify that the partitionπ is given by the juggling cardsCc1, . . . ,Ccn . For instance, the
partitionπ = {{1,3,7}, {2}, {4,5}, {6,8}} is represented by the juggling cardsC0, C1, C1,
C2,C0,C3,C2, andC1 in Fig. 3. Note that the sum of the indices of the cards is the num
of crossings.

Observe thatq(
k
2) always divides theq-Stirling numberS[n, k]. Sometimes it is

convenient to work with the modifiedq-Stirling number̃S[n, k] defined by

S̃[n, k] = q−(k2) · S[n, k].

The modifiedq-Stirling number of the second kind̃S[n, k] has the natural interpretatio
when we omit the incoming paths and then count the crossings in the remaining patte
c̃ross(π) denote the number of crossings in such a pattern, that is,̃cross(π)= cross(π)−(
k
2

)
. Thus we have

S̃[n, k] =
∑
π

q c̃ross(π).

3. The determinant of q-Stirling numbers

We now consider the determinant of the matrix consisting ofq-Stirling numbers. We
present two proofs for evaluating this determinant.

Theorem 3.1. Letn ands be non-negative integers. Then we have

det
(
S[s + i + j, s + j ])0�i,j�n

= q(
s+n+1

3 )−(s3) · [s]0 · [s + 1]1 · · · [s + n]n.
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Proof. Let T denote the set of all(n + 2)-tuples (σ,π0,π1, . . . , πn) where σ is a
permutation on the set{0,1, . . . , n} andπi is a partition of the set{1, . . . , s + i + σ(i)}
into s + σ(i) blocks. Expanding the determinant we have

det
(
S[s + i + j, s + j ])0�i,j�n

=
∑

(σ,π0,...,πn)∈T
(−1)σ · qcross(π0)+···+cross(πn).

Let (σ,π0, . . . , πn) be in the setT . Let Xi be the set{1, . . . , s + i} and Yi the set
{s+ i+1, . . . , s+ i+σ(i)}. Define the integerai = |πi |Xi |−s. That is,ai +s is the number
of blocks inπi that intersect non-trivially the setXi . From this we conclude thatai � i.
Since the total number of blocks iss + σ(i) we also obtain thatai � σ(i). Finally, observe
that the number of blocks that are contained in the setYi is (s+σ(i))−(ai+s)= σ(i)−ai .
This number must be less than or equal to the cardinality of the setYi , which isσ(i). Thus
we conclude thatai � 0.

Let T1 consist of all tuples(σ,π0, . . . , πn) in T such that theai ’s are distinct. Let us
now consider those tuples that are inT1. Observe that the inequalitiesai � i andai � σ(i)

imply thatai = i = σ(i) for all indicesi. Hence the partitionπi consists ofs + i blocks
with each block containing one element from the set{1, . . . , s + i}. Observe that suc
a partition is represented by the juggling cardsC0,C1, . . . ,Cs+i−1,Cα1, . . . ,Cαi , where
0 � α1, . . . , αi � s+ i−1. Thus summingq to the power of the crossing statistic cross(πi)

over all such possible partitionsπi , we have∑
πi

qcross(πi) = q(
s+i
2 ) · [s + i]i .

Hence we have

∑
(σ,π0,...,πn)∈T1

(−1)σ · qcross(π0)+···+cross(πn) =
n∏

i=0

q(
s+i
2 ) · [s + i]i . (3.1)

Let T2 be the complement ofT1, that is,T2 = T − T1. We define a sign-reversin
involution onT2 as follows. For(σ,π0, . . . , πn) in T2 we know that there exists a pa
of indices(j, k) such thataj = ak. Let (j, k) be the least such pair in the lexicograp
order. Letσ ′ be the permutationσ ′(j)= σ(k), σ ′(k)= σ(j) andσ ′(i)= σ(i) for i �= j, k.
Clearly,(−1)σ

′ = −(−1)σ . Moreover, letπ ′
i = πi for i �= j, k.

Assume thatπj is constructed by the juggling cardsD(1), . . . ,D(s + j),D(s+ j + 1),
. . . ,D(s+ j +σ(j)) andπk is constructed by the cardsE(1), . . . ,E(s+ k),E(s+ k+1),
. . . ,E(s + k + σ(k)). We now define two new partitionsπ ′

j andπ ′
k . Letπ ′

j be constructed
by the juggling cardsD(1), . . . ,D(s + j),E(s + k + 1), . . . ,E(s + j + σ(k)) andπ ′

k

constructed by the cardsE(1), . . . ,E(s + k),D(s + j + 1), . . . ,D(s + j + σ(j)).
Notice that we need to addσ(k) − σ(j) paths at the top of each of the car

D(1), . . . ,D(s + j) and similarly, removeσ(k) − σ(j) paths from the top of the card
E(1), . . . ,E(s + k) in order that each card has the same number paths as blocks
partition.
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The map(σ,π0, . . . , πn) �→ (σ ′,π ′
0, . . . , π

′
n) on T2 defines a sign-reversing involutio

Moreover, the quantity cross(π0)+ · · · + cross(πn) is invariant under the involution. Thu
the determinant is given by the product in Eq. (3.1).✷

We now present a second proof of Theorem 3.1. It requires some more notatio
as byproduct we obtain identities forq-Stirling numbers. For non-negative integersn, k
andh, let Fn(k,h) be the collection of all sequences(c1, . . . , cn) ∈ {0, . . . , k − 1}n such
that in the juggling pattern(Cc1, . . . ,Ccn) each of theh highest paths at time 0, that is, th
paths labeledk − h+ 1, k − h+ 2, . . . ,k, touch down at one of nodes in{1,2, . . . , n}. Let
f n[k,h] denote theq-analogue of the cardinality of the setFn(k,h), that is,

f n[k,h] =
∑

(c1,...,cn)∈Fn(k,h)

qc1+···+cn .

Lemma 3.2. The polynomialf n[k,h] is given by

f n[k,h] =
h∑

j=0

(−1)j · q(j2) ·
[
h

j

]
· [k − j ]n.

Proof. The expression[k]n q-enumerates all sequences ofn juggling cards with each car
havingk paths. We will enumerate this set in a second way to obtain a different expre
from which the lemma will follow.

Observe thatf n[k− j,h− j ] enumerates the collection of patterns where thej highest
paths do not touch down, but theh−j next highest are forced to touch down. We genera
this observation as follows. LetS = {i1 < i2 < · · · < ij } be a subset of{1, . . . , h}. The
collection of patterns where thei1, i2, . . . , ij highest paths do not touch down but the pa
in {1, . . . , h} − {i1, i2, . . . , ij } do touch down is counted by

qi1+i2+···+ij−1−2−···−j · f n[k − j,h− j ] = qρ(S) · f n[k − j,h− j ].

Summing over all subsetsS of cardinalityj , we have

[k]n =
h∑

j=0

[
h

j

]
· f n[k − j,h− j ].

Applying theq-inversion formula, see [10, Eq. (5)], the lemma follows.✷
Theorem 3.3. Theq-Stirling numberS[m+ n, k] can be expressed by

S[m+ n, k] =
∑
i

S[m, i] · f
n[k, k − i]
[k − i]! ,

wherei ranges betweenmax(0, k − n) andmin(m, k).
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Proof. Consider a partitionπ of {1, . . . ,m + n} into k blocks. Letc1, . . . , cm+n be the
corresponding sequence. When restricting this partition to the set{1, . . . ,m}, that is, to
consider the sequencec1, . . . , cm, we obtain a partition intoi blocks. The remaining pa
of the sequencecm+1, . . . , cm+n corresponds to a pattern where thek − i highest paths
touch down. However, thesek − i paths touch down in order of height. Thus we need
divide the termf n[k, k− i] with theq-factorial[k− i]! to take the order of thek− i paths
in account.

Finally observe that we need 0� i � m, i � k, andk − i � n to make the terms in th
sum non-zero. ✷
Second proof of Theorem 3.1. By Theorem 3.3 we have withm = s + i, n = j , and
k = s + j ,

S[s + i + j, s + j ] =
s+min(i,j)∑

α=s

S[s + i, α] · f
j [s + j, s + j − α]

[s + j − α]!

=
min(i,j)∑
β=0

S[s + i, s + β] · f
j [s + j, j − β]

[j − β]! .

This shows that the matrixM = (S[s+ i+ j, s+ j ])0�i,j�n factors into a lower triangula
matrix L = (S[s + i, s + β])0�i,β�n and an upper triangular matrixU = (f j [s + j, j −
β]/[j − β]!)0�β,j�n. Hence the determinant ofM is the product of the elements on t
diagonals ofL andU. Hence

det(M)=
n∏

i=0

S[s + i, s + i] · f i [s + i,0] =
n∏

i=0

q(
s+i

2 ) · [s + i]i . ✷

4. The Hankel determinant for q-exponential polynomials

The exponential polynomialsen(z) are defined byen(z)=∑n
k=0S(n, k) · zk =∑

π z
|π |

whereπ ranges over all partitions of ann-element set. Observe thaten(1) is thenth Bell
number. The Hankel determinant of the Bell numbers and more generally, the expo
polynomials have been considered in several articles [1,7,14–18]. Cigler [5] obtain
q-analogue of this Hankel determinant, namely a similar factorization for the Ha
determinant of theq-exponential polynomials. We present two proofs of his identity.
first proof is an extension of the bijective proof appearing in [7].

Define theq-analogue ofen(z), theq-exponential polynomials, by

ẽn[z] =
n∑

k=0

S̃[n, k] · zk =
∑
π

q c̃ross(π) · z|π |.
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Theorem 4.1 (Cigler).The Hankel determinant of theq-exponential polynomials is

det
(
ẽi+j [z]

)
0�i,j�n

= q(
n+1

3 ) · [0]! · [1]! · · · [n]! · z(n+1
2 ).

Proof. Let T denote the set of all(n+ 2)-tuples(σ,π0,π1, . . . , πn) whereσ is a permu-
tation on the set{0,1, . . . , n} andπi is a partition of the set{1, . . . , i + σ(i)}. Expanding
the determinant we have

det
(
ẽi+j [z]

)
0�i,j�n

=
∑

(σ,π0,...,πn)∈T
(−1)σ · q c̃ross(π0)+···+c̃ross(πn) · z|π0|+···+|πn|.

For (σ,π0, . . . , πn) in T defineai to be the number of blocks inπi that intersect non
trivially both {1, . . . , i} and{i + 1, . . . , i + σ(i)}. It is clear from both intersections th
ai � i andai � σ(i).

Let T1 consist of all tuples(σ,π0, . . . , πn) in T such that theai ’s are distinct. Let
us now consider thoses tuples that are inT1. Observe that the inequalitiesai � i and
ai � σ(i) imply that ai = i = σ(i) for all indices i. Hence the partitionπi consists
of i blocks with each block containing one element from{1, . . . , i} and one from
{i + 1, . . . ,2 · i}. There arei! such partitions. They are described by the juggling ca
C0, . . . ,Ci−1,Cα0, . . . ,Cαi−1, wherei � αi � n− 1. Thus summingq to the power of the

crossing statistic̃cross(πi) over all such possible partitionsπi , we have
∑

πi
q c̃ross(πi) ·

z|πi | = q(
i
2) · [i]! · zi . Thus we conclude that∑

(σ,π0,...,πn)∈T1

(−1)σ · q c̃ross(π0)+···+c̃ross(πn) · z|π0|+···+|πn|

= q(
n+1

3 ) · [0]! · [1]! · · · [n]! · z(n+1
2 ).

Now we define a sign-reversing involution on the setT2. For (σ,π0, . . . , πn) in T2 let
(j, k) be the least such pair in the lexicographic order such thataj = ak . Defineσ ′ andπ ′

i

for i �= j, k as in the first proof of Theorem 3.1. We need to define the partitionsπ ′
j andπ ′

k .
Let a denoteaj = ak. For i = j, k, let Xi be the set{1, . . . , i} and Yi be the set

{i + 1, . . . , i + σ(i)}. Let κi denote the partitionπi restricted to the setXi andλi denote
the partition restricted toYi . In each of these two partitions mark thea blocks that are
restrictions of the blocks having elements in bothXi andYi .

Defineπ ′
j to be the join of the partitionsκj andλk on the setXj ∪ Yk where we join

thea marked blocks ofκj with thea marked blocks ofλk . Merge thea blocks in the orde
described by the partitionπj . Defineπ ′

k similarly. It is clear that|πj | + |πk| = |π ′
j | + |π ′

k|.
It remains to show that

c̃ross(πj )+ c̃ross(πk)= c̃ross
(
π ′
j

)+ c̃ross
(
π ′
k

)
. (4.1)

We prove this identity by carefully analyzing the types of crossings in the partitioπi ,
where i = j, k. Let xi be the number blocks ofκi that are not marked and similar
defineyi . Let αi be the number of crossings occurring between thea paths leaving the
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Fig. 4. Sketch of the partitionπj in the proof of Theorem 4.1. Observe thata = 2, xj = 2, yj = 3. The crossing
displayed are counted byαj = 1, βj = 2, γj = 4, andxj · yj = 6.

setXi and arriving at the setYi . Let βi be the number of crossings occurring betwe
the xi paths leaving the setXi going upwards and thea paths continuing to the setYi .
Symmetrically, letγi be the number crossings occurring between theyi incoming paths
and thea continuing paths. We have now taken into account all the crossings ofπi , that is,
cross(πi)= cross(κi)+ cross(λi)+ xi · yi +αi +βi + γi . See Fig. 4 for an example. Sin(
a+xi

2

)+ (
a+yi

2

)+ xi · yi −
(
a+xi+yi

2

)= (
a
2

)
, the modified crossing statistic satisfies

c̃ross(πi)= c̃ross(κi)+ c̃ross(λi)+
(
a

2

)
+ αi + βi + γi. (4.2)

Now by the definition ofπ ′
j we have that

c̃ross
(
π ′
j

)= c̃ross(κj )+ c̃ross(λk)+
(
a

2

)
+ αj + βj + γk.

By adding this equation to the symmetric one forπ ′
k Eq. (4.1) follows. Hence we obtai

a sign-reversing involution that keeps the necessary statistics invariant, thus prov
expansion. ✷

The next proof is similar to Cigler’s proof, namely the objective is to obtain anLDU-
decomposition of the matrix. However, we are able to obtain this factorization in a p
combinatorial manner. To simplify the notation let us introduce the linear operatorDq by

Dq

(
f (z)

)= f (z)− f (q · z)
(1− q) · z . (4.3)

This is theq-analogue of the derivative. For our purposes it is enough to observe
Dq(z

n)= [n] · zn−1.

Second proof of Theorem 4.1. LetX be the set{1, . . . , i} andY the set{i+1, . . . , i+ j }.
We determine the number of ways to choose a partition onX ∪ Y . First choose a non
negative integera. Then choose a partitionκ on X with a + x blocks, and a partitionλ
on Y with a + y blocks. Selecta blocks of κ and a blocks ofλ. This can be done in(
a+x
a

) · (a+y
a

)
ways. There area! ways to match these selected blocks. We then obta

partitionπ onX ∪ Y with a + x + y blocks.
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The crossing statistic of the partitionπ is described by Eq. (4.2) except without a
subscripts. However, notice that when summing over all the ways to obtain the partiπ

from κ andλ, theα-crossings will be counted by[a]!. Similarly, theβ-crossings will be
counted by

[
a+x
a

]
and theγ -crossings will be counted by

[
a+y
a

]
. Thus we have

ẽi+j [z] =
∑
a�0

∑
x�0

∑
y�0

S̃[i, a + x] · S̃[j, a + y] · q(a2) · [a]! ·
[
a + x

a

]
·
[
a + y

a

]
· za+x+y

=
∑
a�0

(∑
x�0

S̃[i, a + x] · [a + x]!
[x]! · zx

)
· q

(a2) · za
[a]!

×
(∑

y�0

S̃[j, a + y] · [a + y]!
[y]! · zy

)

=
∑
a�0

Da
q

(
ẽi [z]

) · q(a2) · za
[a]! ·Da

q

(
ẽj [z]

)
.

Hence the Hankel matrix(ẽi+j [z])0�i,j�n factors into a lower triangular matrixL =
(Da

q (ẽi[z]))0�i,a�n, a diagonal matrixD havingq(
a
2) · za/[a]! as its(a, a) entry and an

upper triangular matrixU = L∗. Thus the determinant of the Hankel matrix is the prod
of the diagonal elements of these three matrices, that is,

n∏
i=0

Di
q

(
ẽi[z]

)2 · q
(i2) · zi
[i]! =

n∏
i=0

[i]! · q(i2) · zi. ✷

5. An extension of a theorem of Sylvester

On the space of infinitely differentiable functions of two variablesx andy, define the
operatorTn by

Tn(f )= det

(
∂i+j f

∂xi∂yj

)
0�i,j�n

.

The operatorTn satisfies the following identity.

Theorem 5.1. The operatorsTn satisfy the functional equation

T1
(
Tn(f )

)= Tn−1(f ) · Tn+1(f ).

Proof. LetM denote the(n+2)× (n+2)-matrix(∂i+j f/∂xi∂yj )0�i,j�n+1. ForS andT
subsets of{0,1, . . . , n+ 1} having the same cardinality letmS,T denote the minor with the
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ed
ve

of the
rows indexed by the setn+ 1− S = {n+ 1− s: s ∈ S} removed and the columns index
by n+ 1− T removed. Applying the Desnanot–Jacobi adjoint matrix theorem, we ha

m{0},{0} ·m{1},{1} −m{0},{1} ·m{1},{0} =m{0,1},{0,1} ·m∅,∅.

It is now straightforward to verify that this identity is the desired result.✷
Corollary 5.2 (Sylvester).Define the operatorSn by Sn(g) = det(∂i+j /∂xi+j g)0�i,j�n.
Then the operatorsSn satisfy the functional equation

S1
(
Sn(g)

)= Sn−1(g) · Sn+1(g).

Proof. Apply Theorem 5.1 to the functionf (x, y)= g(x + y) and then sety = 0. ✷
This result was used by Radoux in one of his proofs of the Hankel determinant

exponential polynomials [16]. Namely, by induction and Corollary 5.2 computeSn(g),
where

g(x)= exp
(
z · (ex − 1)

)=
∑
n�0

en(z) · xn/n!

and then setx = 0.
As an application of Theorem 5.1, we evaluate the following determinant.

Theorem 5.3.

det

(
S(s + i + j, s + j)

(s + i + j)!
)

0�i,j�n

= 2s·(n+1)

(2s)!! · (2s + 2)!! · · · (2s + 2n)!! ,

wherek!! denotes the double factorialk · (k − 2) · · ·2.

Proof. In the expression exp(y · (ex − 1)) =∑
0�j�k S(k, j) · xk/k! · yj substitutey/x

for y to obtain

exp
(
y · (ex − 1)/x

)=
∑

0�j�k

S(k, j)/k! · xk−j · yj

=
∑

0�i,j

S(i + j, j)/(i + j)! · xi · yj .

By Theorem 5.1 and by induction onn it is straightforward to show that

Tn

(
∂s

s
f

)
= 0! · 1! · · ·n! ·

(
d ex − 1

)(n+1
2 ) ·

(
∂s

s
f

)n+1

, (5.1)

∂y dx x ∂y
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wheref (x, y)= exp(y · (ex − 1)/x). Now setx = y = 0 in Eq. (5.1). We obtain that

det
(
S(s + i + j, s + j)/(s + i + j)! · i! · (s + j)!)0�i,j�n

= 0! · 1! · · ·n! · (1/2)(n+1
2 ).

Divide each side by 0! · 1! · · ·n! · s! · (s + 1)! · · · (s + n)! and the result follows. ✷

6. Concluding remarks

Cigler also obtained expressions for the two shifted Hankel determinants:

det
(
ẽi+j+1[z]

)
0�i,j�n

= q(
n+2

2 ) · [0]! · [1]! · · · [n]! · z(n+2
2 ),

det
(
ẽi+j+2[z]

)
0�i,j�n

= q(
n+2

3 ) · [0]! · [1]! · · · [n]! · z(n+2
2 ) ·

(
n+1∑
k=0

q(
k
2) · zk · [n+ 1]!

[k]!

)
;

see [5, Satz 1]. Can bijective proofs be found for these identities? Moreover, consi
the otherq-analogue of the exponential polynomials, namely

en[z] =
n∑

k=0

S[n, k] · zk =
∑
π

qcross(π) · z|π |,

he also has expressions for the Hankel determinant and the two shifted Hankel determ
of en[z]; see [5, Satz 2]. Again it is natural to ask for bijective proofs. However, this m
be more challenging since in these cases the determinant is equal to a product whose
contain terms with negative signs.

One generalization of theq-Stirling numbers is thep,q-Stirling numbers [6,20]. Can
any of the results appearing in this paper be extended to them?

We ask if there is aq-analogue of Theorem 5.3. More interestingly, is there a na
q-analogue of the two variable Sylvester’s Theorem 5.1. One suggestion is to useq-
analogue of the derivative given in Eq. (4.3).
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