

Advances in Applied Mathematics 31 (2003) 630-642

www.elsevier.com/locate/yaama

Determinants involving q-Stirling numbers

Richard Ehrenborg

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA Received 19 July 2002; accepted 10 October 2002

Abstract

Let S[i, j] denote the *q*-Stirling numbers of the second kind. We show that the determinant of the matrix $(S[s + i + j, s + j])_{0 \le i, j \le n}$ is given by the product $q^{\binom{s+n+1}{3} - \binom{s}{3}} \cdot [s]^0 \cdot [s+1]^1 \cdots [s+n]^n$. We give two proofs of this result, one bijective and one based upon factoring the matrix. We also prove an identity due to Cigler that expresses the Hankel determinant of *q*-exponential polynomials as a product. Lastly, a two variable version of a theorem of Sylvester and an application are presented. © 2003 Elsevier Inc. All rights reserved.

1. Introduction

The Stirling numbers of the second kind, S(n, k), count the number of partitions of an *n*element set into *k* blocks. They have a natural *q*-analogue called the *q*-Stirling numbers of the second kind denoted by S[n, k]. They were first defined in the work of Carlitz [4]. A lot of combinatorial work has centered around this *q*-analogue, the earliest by Milne [12,13]; also see [6,9,19,20].

The goal of this article is to evaluate determinants involving q-Stirling numbers and give bijective proofs whenever possible. Our tool is the juggling interpretation of q-Stirling numbers. Juggling patterns were introduced and studied by Buhler et al. [2]. More combinatorial work was done in [3]. Together with Readdy, the author introduced a crossing statistic in the study of juggling patterns to obtain a q-analogue [8]. Notably, Ehrenborg–Readdy give an interpretation of the q-Stirling numbers of the second kind S[n, k] in terms of juggling patterns. This combinatorial interpretation is useful in obtaining identities involving the q-Stirling numbers; see for instance Theorem 3.3. This interpretation of q-Stirling numbers is equivalent to the rook placement interpretation of Garsia and Remmel [9].

E-mail address: jrge@ms.uky.edu.

^{0196-8858/\$ –} see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0196-8858(03)00029-0

In Section 3 we evaluate the determinant det(S[s + i + j, s + j]) and give two different proofs. The bijective proof is based upon the bijection in [7], whereas the second proof uses the *LU*-decomposition of the matrix. Similarly, in Section 4 we give a bijective proof of a result of Cigler that expresses the Hankel determinant of the *q*-exponential polynomials $\tilde{e}_n[x]$ as a product [5]. In the last section we extend a result of Sylvester to evaluate the determinant det(S(s + i + j, s + j)/((s + i + j)!)).

2. q-analogues

We summarize the basic q-analogue notations. For n a non-negative integer, let [n] denote the sum $1 + q + \cdots + q^{n-1}$. The q-factorial [n]! is the product $[1] \cdot [2] \cdots [n]$. We have that

$$\sum_{\sigma} q^{\operatorname{inv}(\sigma)} = [n]!,$$

where σ ranges over all permutations on *n* elements. The *Gaussian coefficient* $\begin{bmatrix} n \\ k \end{bmatrix}$ is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]! \cdot [n-k]!}.$$

It has the following combinatorial interpretation. Define the rank of a set $S = \{s_1, s_2, ..., s_k\}$ of positive integers of cardinality *k* to be the difference $\rho(S) = s_1 + s_2 + \cdots + s_k - 1 - 2 - \cdots - k$. Then the Gaussian coefficient is given by

$$\begin{bmatrix} n \\ k \end{bmatrix} = \sum_{S} q^{\rho(S)},$$

where the sum ranges over all subsets *S* of $\{1, ..., n\}$ of cardinality *k*.

The Stirling number of the second kind S(n, k) is the number of partitions of a set of cardinality *n* into *k* blocks. The *q*-Stirling numbers of the second kind are a natural extension of the classical Stirling numbers. The recursive definition of the *q*-Stirling numbers is

$$S[n,k] = q^{k-1} \cdot S[n-1,k-1] + [k] \cdot S[n-1,k],$$

where $n, k \ge 1$. When n = 0 or k = 0, define $S[n, k] = \delta_{n,k}$. The *q*-Stirling numbers are well-studied; see for instance [6,8,9,11–13,19,20]. There are several combinatorial interpretations of the *q*-Stirling numbers. We now introduce the interpretation of Ehrenborg and Readdy [8].

Let π be a partition of $\{1, ..., n\}$ into k blocks, that is, $\pi = \{B_1, ..., B_k\}$. To this partition π we associate a juggling pattern consisting of k paths with each path corresponding to a block of the partition. The *i*th path touches down at the nodes belonging

R. Ehrenborg / Advances in Applied Mathematics 31 (2003) 630-642

Fig. 1. The juggling pattern associated with the partition $\pi = \{\{1, 3, 7\}, \{2\}, \{4, 5\}, \{6, 8\}\}$. Observe that there are 10 crossings.

to the elements in block B_i . The juggling pattern is drawn so that arcs do not cross each other multiple times and that no more than two arcs intersect at a point. See Fig. 1 for the juggling pattern corresponding the partition $\pi = \{\{1, 3, 7\}, \{2\}, \{4, 5\}, \{6, 8\}\}$. Let cross (π) be the number of crossings in the juggling pattern associated with the partition π . We have the following interpretation of the *q*-Stirling numbers of the second kind [8].

Theorem 2.1 (Ehrenborg–Readdy). *The q-Stirling number of the second kind* S[n, k] *is given by*

$$S[n,k] = \sum_{\pi} q^{\operatorname{cross}(\pi)}$$

where the sum ranges over all partitions π of the set $\{1, \ldots, n\}$ into k blocks.

One of the major tools in studying juggling patterns are juggling cards. The juggling card C_i is the picture that consists of one node and k paths, where the (i + 1)st path from the bottom touches down at the node and then continues as the lowest path. The juggling cards C_0 , C_1 , C_2 , and C_3 are displayed in Fig. 2. Observe that the juggling card C_i has exactly *i* crossings.

Let π be a partition on the set $\{1, ..., n\}$. For *S* a subset of $\{1, ..., n\}$, define the restricted partition $\pi|_S$ to be the partition $\pi|_S = \{B \cap S: B \in \pi, B \cap S \neq \emptyset\}$. Moreover,

Fig. 2. The four juggling cards C_0 , C_1 , C_2 , and C_3 .

Fig. 3. The partition $\pi = \{\{1, 3, 7\}, \{2\}, \{4, 5\}, \{6, 8\}\}$ represented by juggling cards.

for $1 \le i \le n$, we will define c_i so that we can represent our partition as the juggling cards C_{c_1}, \ldots, C_{c_n} . To do this, let *j* be the maximum of the set

 $\{0\} \cup \{h: h < i, h \text{ and } i \text{ belong to the same block of } \pi\}.$

Let c_i be the number blocks in the restricted partition $\pi|_{\{j+1,\ldots,i-1\}}$. It is straightforward to verify that the partition π is given by the juggling cards C_{c_1}, \ldots, C_{c_n} . For instance, the partition $\pi = \{\{1, 3, 7\}, \{2\}, \{4, 5\}, \{6, 8\}\}$ is represented by the juggling cards $C_0, C_1, C_1, C_2, C_0, C_3, C_2$, and C_1 in Fig. 3. Note that the sum of the indices of the cards is the number of crossings.

Observe that $q^{\binom{k}{2}}$ always divides the *q*-Stirling number S[n, k]. Sometimes it is convenient to work with the modified *q*-Stirling number $\widetilde{S}[n, k]$ defined by

$$\widetilde{S}[n,k] = q^{-\binom{k}{2}} \cdot S[n,k].$$

The modified q-Stirling number of the second kind $\tilde{S}[n, k]$ has the natural interpretation when we omit the incoming paths and then count the crossings in the remaining pattern. Let $\tilde{cross}(\pi)$ denote the number of crossings in such a pattern, that is, $\tilde{cross}(\pi) = cross(\pi) - {k \choose 2}$. Thus we have

$$\widetilde{S}[n,k] = \sum_{\pi} q^{\widetilde{\operatorname{cross}}(\pi)}.$$

3. The determinant of *q*-Stirling numbers

We now consider the determinant of the matrix consisting of q-Stirling numbers. We present two proofs for evaluating this determinant.

Theorem 3.1. Let n and s be non-negative integers. Then we have

$$\det(S[s+i+j,s+j])_{0\leqslant i,j\leqslant n} = q^{\binom{s+n+1}{3} - \binom{s}{3}} \cdot [s]^0 \cdot [s+1]^1 \cdots [s+n]^n.$$

Proof. Let *T* denote the set of all (n + 2)-tuples $(\sigma, \pi_0, \pi_1, ..., \pi_n)$ where σ is a permutation on the set $\{0, 1, ..., n\}$ and π_i is a partition of the set $\{1, ..., s + i + \sigma(i)\}$ into $s + \sigma(i)$ blocks. Expanding the determinant we have

$$\det(S[s+i+j,s+j])_{0\leqslant i,j\leqslant n}=\sum_{(\sigma,\pi_0,\ldots,\pi_n)\in T}(-1)^{\sigma}\cdot q^{\operatorname{cross}(\pi_0)+\cdots+\operatorname{cross}(\pi_n)}.$$

Let $(\sigma, \pi_0, ..., \pi_n)$ be in the set *T*. Let X_i be the set $\{1, ..., s + i\}$ and Y_i the set $\{s+i+1, ..., s+i+\sigma(i)\}$. Define the integer $a_i = |\pi_i|_{X_i}| - s$. That is, $a_i + s$ is the number of blocks in π_i that intersect non-trivially the set X_i . From this we conclude that $a_i \leq i$. Since the total number of blocks is $s + \sigma(i)$ we also obtain that $a_i \leq \sigma(i)$. Finally, observe that the number of blocks that are contained in the set Y_i is $(s + \sigma(i)) - (a_i + s) = \sigma(i) - a_i$. This number must be less than or equal to the cardinality of the set Y_i , which is $\sigma(i)$. Thus we conclude that $a_i \geq 0$.

Let T_1 consist of all tuples $(\sigma, \pi_0, ..., \pi_n)$ in T such that the a_i 's are distinct. Let us now consider those tuples that are in T_1 . Observe that the inequalities $a_i \leq i$ and $a_i \leq \sigma(i)$ imply that $a_i = i = \sigma(i)$ for all indices i. Hence the partition π_i consists of s + i blocks with each block containing one element from the set $\{1, ..., s + i\}$. Observe that such a partition is represented by the juggling cards $C_0, C_1, ..., C_{s+i-1}, C_{\alpha_1}, ..., C_{\alpha_i}$, where $0 \leq \alpha_1, ..., \alpha_i \leq s + i - 1$. Thus summing q to the power of the crossing statistic cross (π_i) over all such possible partitions π_i , we have

$$\sum_{\pi_i} q^{\operatorname{cross}(\pi_i)} = q^{\binom{s+i}{2}} \cdot [s+i]^i$$

Hence we have

$$\sum_{(\sigma,\pi_0,\dots,\pi_n)\in T_1} (-1)^{\sigma} \cdot q^{\operatorname{cross}(\pi_0)+\dots+\operatorname{cross}(\pi_n)} = \prod_{i=0}^n q^{\binom{s+i}{2}} \cdot [s+i]^i.$$
(3.1)

Let T_2 be the complement of T_1 , that is, $T_2 = T - T_1$. We define a sign-reversing involution on T_2 as follows. For $(\sigma, \pi_0, \ldots, \pi_n)$ in T_2 we know that there exists a pair of indices (j, k) such that $a_j = a_k$. Let (j, k) be the least such pair in the lexicographic order. Let σ' be the permutation $\sigma'(j) = \sigma(k)$, $\sigma'(k) = \sigma(j)$ and $\sigma'(i) = \sigma(i)$ for $i \neq j, k$. Clearly, $(-1)^{\sigma'} = -(-1)^{\sigma}$. Moreover, let $\pi'_i = \pi_i$ for $i \neq j, k$.

Assume that π_j is constructed by the juggling cards $D(1), \ldots, D(s+j), D(s+j+1), \ldots, D(s+j+\sigma(j))$ and π_k is constructed by the cards $E(1), \ldots, E(s+k), E(s+k+1), \ldots, E(s+k+\sigma(k))$. We now define two new partitions π'_j and π'_k . Let π'_j be constructed by the juggling cards $D(1), \ldots, D(s+j), E(s+k+1), \ldots, E(s+j+\sigma(k))$ and π'_k constructed by the cards $E(1), \ldots, E(s+k), D(s+j+1), \ldots, D(s+j+\sigma(j))$.

Notice that we need to add $\sigma(k) - \sigma(j)$ paths at the top of each of the cards $D(1), \ldots, D(s+j)$ and similarly, remove $\sigma(k) - \sigma(j)$ paths from the top of the cards $E(1), \ldots, E(s+k)$ in order that each card has the same number paths as blocks in the partition.

The map $(\sigma, \pi_0, ..., \pi_n) \mapsto (\sigma', \pi'_0, ..., \pi'_n)$ on T_2 defines a sign-reversing involution. Moreover, the quantity $cross(\pi_0) + \cdots + cross(\pi_n)$ is invariant under the involution. Thus the determinant is given by the product in Eq. (3.1). \Box

We now present a second proof of Theorem 3.1. It requires some more notation, but as byproduct we obtain identities for *q*-Stirling numbers. For non-negative integers *n*, *k* and *h*, let $F^n(k, h)$ be the collection of all sequences $(c_1, \ldots, c_n) \in \{0, \ldots, k-1\}^n$ such that in the juggling pattern $(C_{c_1}, \ldots, C_{c_n})$ each of the *h* highest paths at time 0, that is, the paths labeled k - h + 1, k - h + 2, ..., *k*, touch down at one of nodes in $\{1, 2, \ldots, n\}$. Let $f^n[k, h]$ denote the *q*-analogue of the cardinality of the set $F^n(k, h)$, that is,

$$f^{n}[k,h] = \sum_{(c_{1},...,c_{n})\in F^{n}(k,h)} q^{c_{1}+\cdots+c_{n}}.$$

Lemma 3.2. The polynomial $f^n[k, h]$ is given by

$$f^{n}[k,h] = \sum_{j=0}^{n} (-1)^{j} \cdot q^{\binom{j}{2}} \cdot {\binom{h}{j}} \cdot [k-j]^{n}.$$

Proof. The expression $[k]^n q$ -enumerates all sequences of *n* juggling cards with each card having *k* paths. We will enumerate this set in a second way to obtain a different expression from which the lemma will follow.

Observe that $f^n[k-j, h-j]$ enumerates the collection of patterns where the *j* highest paths do not touch down, but the h-j next highest are forced to touch down. We generalize this observation as follows. Let $S = \{i_1 < i_2 < \cdots < i_j\}$ be a subset of $\{1, \ldots, h\}$. The collection of patterns where the i_1, i_2, \ldots, i_j highest paths do not touch down but the paths in $\{1, \ldots, h\} - \{i_1, i_2, \ldots, i_j\}$ do touch down is counted by

$$q^{i_1+i_2+\dots+i_j-1-2-\dots-j} \cdot f^n[k-j,h-j] = q^{\rho(S)} \cdot f^n[k-j,h-j].$$

Summing over all subsets S of cardinality j, we have

$$[k]^{n} = \sum_{j=0}^{h} {h \brack j} \cdot f^{n}[k-j, h-j].$$

Applying the q-inversion formula, see [10, Eq. (5)], the lemma follows. \Box

Theorem 3.3. The q-Stirling number S[m + n, k] can be expressed by

$$S[m+n,k] = \sum_{i} S[m,i] \cdot \frac{f^{n}[k,k-i]}{[k-i]!},$$

where *i* ranges between $\max(0, k - n)$ and $\min(m, k)$.

Proof. Consider a partition π of $\{1, \ldots, m + n\}$ into k blocks. Let c_1, \ldots, c_{m+n} be the corresponding sequence. When restricting this partition to the set $\{1, \ldots, m\}$, that is, to consider the sequence c_1, \ldots, c_m , we obtain a partition into i blocks. The remaining part of the sequence c_{m+1}, \ldots, c_{m+n} corresponds to a pattern where the k - i highest paths touch down. However, these k - i paths touch down in order of height. Thus we need to divide the term $f^n[k, k-i]$ with the q-factorial [k-i]! to take the order of the k - i paths in account.

Finally observe that we need $0 \le i \le m$, $i \le k$, and $k - i \le n$ to make the terms in the sum non-zero. \Box

Second proof of Theorem 3.1. By Theorem 3.3 we have with m = s + i, n = j, and k = s + j,

$$S[s+i+j,s+j] = \sum_{\alpha=s}^{s+\min(i,j)} S[s+i,\alpha] \cdot \frac{f^{j}[s+j,s+j-\alpha]}{[s+j-\alpha]!}$$
$$= \sum_{\beta=0}^{\min(i,j)} S[s+i,s+\beta] \cdot \frac{f^{j}[s+j,j-\beta]}{[j-\beta]!}.$$

This shows that the matrix $\mathbf{M} = (S[s+i+j,s+j])_{0 \le i,j \le n}$ factors into a lower triangular matrix $\mathbf{L} = (S[s+i,s+\beta])_{0 \le i,\beta \le n}$ and an upper triangular matrix $\mathbf{U} = (f^j[s+j,j-\beta]/[j-\beta]!)_{0 \le \beta,j \le n}$. Hence the determinant of \mathbf{M} is the product of the elements on the diagonals of \mathbf{L} and \mathbf{U} . Hence

$$\det(\mathbf{M}) = \prod_{i=0}^{n} S[s+i,s+i] \cdot f^{i}[s+i,0] = \prod_{i=0}^{n} q^{\binom{s+i}{2}} \cdot [s+i]^{i}. \qquad \Box$$

4. The Hankel determinant for *q*-exponential polynomials

The exponential polynomials $e_n(z)$ are defined by $e_n(z) = \sum_{k=0}^n S(n,k) \cdot z^k = \sum_{\pi} z^{|\pi|}$ where π ranges over all partitions of an *n*-element set. Observe that $e_n(1)$ is the *n*th Bell number. The Hankel determinant of the Bell numbers and more generally, the exponential polynomials have been considered in several articles [1,7,14–18]. Cigler [5] obtained the *q*-analogue of this Hankel determinant, namely a similar factorization for the Hankel determinant of the *q*-exponential polynomials. We present two proofs of his identity. The first proof is an extension of the bijective proof appearing in [7].

Define the *q*-analogue of $e_n(z)$, the *q*-exponential polynomials, by

$$\tilde{e}_n[z] = \sum_{k=0}^n \widetilde{S}[n,k] \cdot z^k = \sum_{\pi} q^{\widetilde{\operatorname{cross}}(\pi)} \cdot z^{|\pi|}.$$

Theorem 4.1 (Cigler). The Hankel determinant of the q-exponential polynomials is

$$\det(\tilde{e}_{i+j}[z])_{0\leqslant i,j\leqslant n} = q^{\binom{n+1}{3}} \cdot [0]! \cdot [1]! \cdots [n]! \cdot z^{\binom{n+1}{2}}.$$

Proof. Let *T* denote the set of all (n + 2)-tuples $(\sigma, \pi_0, \pi_1, ..., \pi_n)$ where σ is a permutation on the set $\{0, 1, ..., n\}$ and π_i is a partition of the set $\{1, ..., i + \sigma(i)\}$. Expanding the determinant we have

$$\det(\tilde{e}_{i+j}[z])_{0\leqslant i,j\leqslant n} = \sum_{(\sigma,\pi_0,\dots,\pi_n)\in T} (-1)^{\sigma} \cdot q^{\widetilde{\operatorname{cross}}(\pi_0)+\dots+\widetilde{\operatorname{cross}}(\pi_n)} \cdot z^{|\pi_0|+\dots+|\pi_n|}$$

For $(\sigma, \pi_0, ..., \pi_n)$ in *T* define a_i to be the number of blocks in π_i that intersect non-trivially both $\{1, ..., i\}$ and $\{i + 1, ..., i + \sigma(i)\}$. It is clear from both intersections that $a_i \leq i$ and $a_i \leq \sigma(i)$.

Let T_1 consist of all tuples $(\sigma, \pi_0, ..., \pi_n)$ in T such that the a_i 's are distinct. Let us now consider thoses tuples that are in T_1 . Observe that the inequalities $a_i \leq i$ and $a_i \leq \sigma(i)$ imply that $a_i = i = \sigma(i)$ for all indices i. Hence the partition π_i consists of i blocks with each block containing one element from $\{1, ..., i\}$ and one from $\{i + 1, ..., 2 \cdot i\}$. There are i! such partitions. They are described by the juggling cards $C_0, ..., C_{i-1}, C_{\alpha_0}, ..., C_{\alpha_{i-1}}$, where $i \leq \alpha_i \leq n-1$. Thus summing q to the power of the crossing statistic $\widetilde{cross}(\pi_i)$ over all such possible partitions π_i , we have $\sum_{\pi_i} q^{\widetilde{cross}(\pi_i)} \cdot z^{|\pi_i|} = q^{\binom{i}{2}} \cdot [i]! \cdot z^i$. Thus we conclude that

$$\sum_{\substack{(\sigma,\pi_0,\dots,\pi_n)\in T_1\\ = q^{\binom{n+1}{3}} \cdot [0]! \cdot [1]! \cdots [n]! \cdot z^{\binom{n+1}{2}}} z^{|\pi_0|+\dots+|\pi_n|}$$

Now we define a sign-reversing involution on the set T_2 . For $(\sigma, \pi_0, ..., \pi_n)$ in T_2 let (j, k) be the least such pair in the lexicographic order such that $a_j = a_k$. Define σ' and π'_i for $i \neq j, k$ as in the first proof of Theorem 3.1. We need to define the partitions π'_i and π'_k .

Let *a* denote $a_j = a_k$. For i = j, k, let X_i be the set $\{1, \ldots, i\}$ and Y_i be the set $\{i + 1, \ldots, i + \sigma(i)\}$. Let κ_i denote the partition π_i restricted to the set X_i and λ_i denote the partition restricted to Y_i . In each of these two partitions mark the *a* blocks that are restrictions of the blocks having elements in both X_i and Y_i .

Define π'_j to be the join of the partitions κ_j and λ_k on the set $X_j \cup Y_k$ where we join the *a* marked blocks of κ_j with the *a* marked blocks of λ_k . Merge the *a* blocks in the order described by the partition π_j . Define π'_k similarly. It is clear that $|\pi_j| + |\pi_k| = |\pi'_j| + |\pi'_k|$. It remains to show that

$$\widetilde{\operatorname{cross}}(\pi_j) + \widetilde{\operatorname{cross}}(\pi_k) = \widetilde{\operatorname{cross}}(\pi'_j) + \widetilde{\operatorname{cross}}(\pi'_k).$$
(4.1)

We prove this identity by carefully analyzing the types of crossings in the partition π_i , where i = j, k. Let x_i be the number blocks of κ_i that are not marked and similarly define y_i . Let α_i be the number of crossings occurring between the *a* paths leaving the

R. Ehrenborg / Advances in Applied Mathematics 31 (2003) 630-642

Fig. 4. Sketch of the partition π_j in the proof of Theorem 4.1. Observe that a = 2, $x_j = 2$, $y_j = 3$. The crossing displayed are counted by $\alpha_j = 1$, $\beta_j = 2$, $\gamma_j = 4$, and $x_j \cdot y_j = 6$.

set X_i and arriving at the set Y_i . Let β_i be the number of crossings occurring between the x_i paths leaving the set X_i going upwards and the *a* paths continuing to the set Y_i . Symmetrically, let γ_i be the number crossings occurring between the y_i incoming paths and the *a* continuing paths. We have now taken into account all the crossings of π_i , that is, $\operatorname{cross}(\pi_i) = \operatorname{cross}(\kappa_i) + \operatorname{cross}(\lambda_i) + x_i \cdot y_i + \alpha_i + \beta_i + \gamma_i$. See Fig. 4 for an example. Since $\binom{a+x_i}{2} + \binom{a+y_i}{2} + x_i \cdot y_i - \binom{a+x_i+y_i}{2} = \binom{a}{2}$, the modified crossing statistic satisfies

$$\widetilde{\operatorname{cross}}(\pi_i) = \widetilde{\operatorname{cross}}(\kappa_i) + \widetilde{\operatorname{cross}}(\lambda_i) + \binom{a}{2} + \alpha_i + \beta_i + \gamma_i.$$
(4.2)

Now by the definition of π'_i we have that

$$\widetilde{\operatorname{cross}}(\pi'_j) = \widetilde{\operatorname{cross}}(\kappa_j) + \widetilde{\operatorname{cross}}(\lambda_k) + \binom{a}{2} + \alpha_j + \beta_j + \gamma_k$$

By adding this equation to the symmetric one for π'_k Eq. (4.1) follows. Hence we obtain a sign-reversing involution that keeps the necessary statistics invariant, thus proving the expansion. \Box

The next proof is similar to Cigler's proof, namely the objective is to obtain an *LDU*-decomposition of the matrix. However, we are able to obtain this factorization in a purely combinatorial manner. To simplify the notation let us introduce the linear operator D_q by

$$D_q(f(z)) = \frac{f(z) - f(q \cdot z)}{(1 - q) \cdot z}.$$
(4.3)

This is the q-analogue of the derivative. For our purposes it is enough to observe that $D_q(z^n) = [n] \cdot z^{n-1}$.

Second proof of Theorem 4.1. Let *X* be the set $\{1, \ldots, i\}$ and *Y* the set $\{i + 1, \ldots, i + j\}$. We determine the number of ways to choose a partition on $X \cup Y$. First choose a non-negative integer *a*. Then choose a partition κ on *X* with a + x blocks, and a partition λ on *Y* with a + y blocks. Select *a* blocks of κ and *a* blocks of λ . This can be done in $\binom{a+x}{a} \cdot \binom{a+y}{a}$ ways. There are *a*! ways to match these selected blocks. We then obtain a partition π on $X \cup Y$ with a + x + y blocks.

The crossing statistic of the partition π is described by Eq. (4.2) except without any subscripts. However, notice that when summing over all the ways to obtain the partition π from κ and λ , the α -crossings will be counted by [a]!. Similarly, the β -crossings will be counted by $\begin{bmatrix} a+y\\ a \end{bmatrix}$ and the γ -crossings will be counted by $\begin{bmatrix} a+y\\ a \end{bmatrix}$. Thus we have

$$\begin{split} \tilde{e}_{i+j}[z] &= \sum_{a \ge 0} \sum_{x \ge 0} \sum_{y \ge 0} \widetilde{S}[i, a+x] \cdot \widetilde{S}[j, a+y] \cdot q^{\binom{a}{2}} \cdot [a]! \cdot \begin{bmatrix} a+x \\ a \end{bmatrix} \cdot \begin{bmatrix} a+y \\ a \end{bmatrix} \cdot z^{a+x+y} \\ &= \sum_{a \ge 0} \left(\sum_{x \ge 0} \widetilde{S}[i, a+x] \cdot \frac{[a+x]!}{[x]!} \cdot z^x \right) \cdot \frac{q^{\binom{a}{2}} \cdot z^a}{[a]!} \\ &\times \left(\sum_{y \ge 0} \widetilde{S}[j, a+y] \cdot \frac{[a+y]!}{[y]!} \cdot z^y \right) \\ &= \sum_{a \ge 0} D_q^a \left(\tilde{e}_i[z] \right) \cdot \frac{q^{\binom{a}{2}} \cdot z^a}{[a]!} \cdot D_q^a \left(\tilde{e}_j[z] \right). \end{split}$$

Hence the Hankel matrix $(\tilde{e}_{i+j}[z])_{0 \le i,j \le n}$ factors into a lower triangular matrix $\mathbf{L} = (D_q^a(\tilde{e}_i[z]))_{0 \le i,a \le n}$, a diagonal matrix \mathbf{D} having $q^{\binom{a}{2}} \cdot z^a/[a]!$ as its (a, a) entry and an upper triangular matrix $\mathbf{U} = \mathbf{L}^*$. Thus the determinant of the Hankel matrix is the product of the diagonal elements of these three matrices, that is,

$$\prod_{i=0}^{n} D_{q}^{i} \left(\tilde{e}_{i}[z] \right)^{2} \cdot \frac{q^{\binom{i}{2}} \cdot z^{i}}{[i]!} = \prod_{i=0}^{n} [i]! \cdot q^{\binom{i}{2}} \cdot z^{i}. \qquad \Box$$

5. An extension of a theorem of Sylvester

On the space of infinitely differentiable functions of two variables x and y, define the operator T_n by

$$T_n(f) = \det\left(\frac{\partial^{i+j}f}{\partial x^i \partial y^j}\right)_{0 \le i, j \le n}$$

The operator T_n satisfies the following identity.

Theorem 5.1. The operators T_n satisfy the functional equation

$$T_1(T_n(f)) = T_{n-1}(f) \cdot T_{n+1}(f).$$

Proof. Let *M* denote the $(n+2) \times (n+2)$ -matrix $(\partial^{i+j} f/\partial x^i \partial y^j)_{0 \le i,j \le n+1}$. For *S* and *T* subsets of $\{0, 1, \dots, n+1\}$ having the same cardinality let $m_{S,T}$ denote the minor with the

rows indexed by the set $n + 1 - S = \{n + 1 - s: s \in S\}$ removed and the columns indexed by n + 1 - T removed. Applying the Desnanot–Jacobi adjoint matrix theorem, we have

 $m_{\{0\},\{0\}} \cdot m_{\{1\},\{1\}} - m_{\{0\},\{1\}} \cdot m_{\{1\},\{0\}} = m_{\{0,1\},\{0,1\}} \cdot m_{\emptyset,\emptyset}.$

It is now straightforward to verify that this identity is the desired result. \Box

Corollary 5.2 (Sylvester). Define the operator S_n by $S_n(g) = \det(\partial^{i+j}/\partial x^{i+j}g)_{0 \le i,j \le n}$. Then the operators S_n satisfy the functional equation

$$S_1(S_n(g)) = S_{n-1}(g) \cdot S_{n+1}(g).$$

Proof. Apply Theorem 5.1 to the function f(x, y) = g(x + y) and then set y = 0. \Box

This result was used by Radoux in one of his proofs of the Hankel determinant of the exponential polynomials [16]. Namely, by induction and Corollary 5.2 compute $S_n(g)$, where

$$g(x) = \exp(z \cdot (e^x - 1)) = \sum_{n \ge 0} e_n(z) \cdot x^n / n!$$

and then set x = 0.

As an application of Theorem 5.1, we evaluate the following determinant.

Theorem 5.3.

$$\det\left(\frac{S(s+i+j,s+j)}{(s+i+j)!}\right)_{0\leqslant i,j\leqslant n} = \frac{2^{s\cdot(n+1)}}{(2s)!!\cdot(2s+2)!!\cdots(2s+2n)!!},$$

where k!! denotes the double factorial $k \cdot (k-2) \cdots 2$.

Proof. In the expression $\exp(y \cdot (e^x - 1)) = \sum_{0 \le j \le k} S(k, j) \cdot x^k / k! \cdot y^j$ substitute y/x for y to obtain

$$\exp(y \cdot (e^x - 1)/x) = \sum_{0 \le j \le k} S(k, j)/k! \cdot x^{k-j} \cdot y^j$$
$$= \sum_{0 \le i,j} S(i+j, j)/(i+j)! \cdot x^i \cdot y^j.$$

By Theorem 5.1 and by induction on n it is straightforward to show that

$$T_n\left(\frac{\partial^s}{\partial y^s}f\right) = 0! \cdot 1! \cdots n! \cdot \left(\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{e}^x - 1}{x}\right)^{\binom{n+1}{2}} \cdot \left(\frac{\partial^s}{\partial y^s}f\right)^{n+1},\tag{5.1}$$

where $f(x, y) = \exp(y \cdot (e^x - 1)/x)$. Now set x = y = 0 in Eq. (5.1). We obtain that

$$\det(S(s+i+j,s+j)/(s+i+j)! \cdot i! \cdot (s+j)!)_{0 \le i, j \le n} = 0! \cdot 1! \cdots n! \cdot (1/2)^{\binom{n+1}{2}}.$$

Divide each side by $0! \cdot 1! \cdots n! \cdot s! \cdot (s+1)! \cdots (s+n)!$ and the result follows. \Box

6. Concluding remarks

Cigler also obtained expressions for the two shifted Hankel determinants:

$$\det(\tilde{e}_{i+j+1}[z])_{0\leqslant i,j\leqslant n} = q^{\binom{n+2}{2}} \cdot [0]! \cdot [1]! \cdots [n]! \cdot z^{\binom{n+2}{2}},$$

$$\det(\tilde{e}_{i+j+2}[z])_{0\leqslant i,j\leqslant n} = q^{\binom{n+2}{3}} \cdot [0]! \cdot [1]! \cdots [n]! \cdot z^{\binom{n+2}{2}} \cdot \left(\sum_{k=0}^{n+1} q^{\binom{k}{2}} \cdot z^k \cdot \frac{[n+1]!}{[k]!}\right);$$

see [5, Satz 1]. Can bijective proofs be found for these identities? Moreover, considering the other *q*-analogue of the exponential polynomials, namely

$$e_n[z] = \sum_{k=0}^n S[n,k] \cdot z^k = \sum_{\pi} q^{\operatorname{cross}(\pi)} \cdot z^{|\pi|},$$

he also has expressions for the Hankel determinant and the two shifted Hankel determinants of $e_n[z]$; see [5, Satz 2]. Again it is natural to ask for bijective proofs. However, this might be more challenging since in these cases the determinant is equal to a product whose factors contain terms with negative signs.

One generalization of the q-Stirling numbers is the p, q-Stirling numbers [6,20]. Can any of the results appearing in this paper be extended to them?

We ask if there is a q-analogue of Theorem 5.3. More interestingly, is there a natural q-analogue of the two variable Sylvester's Theorem 5.1. One suggestion is to use the q-analogue of the derivative given in Eq. (4.3).

Acknowledgments

The author thanks Margaret Readdy for comments on an earlier version of this paper. The author was partially supported by National Science Foundation grant 0200624.

References

- [1] M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999) 207-210.
- [2] J. Buhler, D. Eisenbud, R. Graham, C. Wright, Juggling drops and descents, Amer. Math. Monthly 101 (1994) 507–519.

cn + 1;

- [3] J. Buhler, R. Graham, A note on the binomial drop polynomial of a poset, J. Combin. Theory Ser. A 66 (1994) 321–326.
- [4] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000.
- [5] J. Cigler, Eine Charakterisierung der q-Exponentialpolynome, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 208 (1999) 143–157.
- [6] A. de Médicis, P. Leroux, A unified combinatorial approach for q- (and p, q-) Stirling numbers, J. Statist. Plann. Inference 34 (1993) 89–105.
- [7] R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000) 557– 560.
- [8] R. Ehrenborg, M. Readdy, Juggling and applications to q-analogues, Discrete Math. 157 (1996) 107–125.
- [9] A.M. Garsia, J.B. Remmel, q-Counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A 41 (1986) 246–275.
- [10] J. Goldman, G.-C. Rota, On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions, Stud. Appl. Math. 49 (1970) 239–258.
- [11] G. Labelle, P. Leroux, E. Pergola, R. Pinzani, Stirling numbers interpolation using permutations with forbidden subsequences, Discrete Math. 246 (2002) 177–195.
- [12] S.C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978) 89–118.
- [13] S.C. Milne, Restricted growth functions, rank row matchings of partition lattices, and *q*-Stirling numbers, Adv. Math. 43 (1982) 173–196.
- [14] C. Radoux, Calcul effectif de certains déterminants de Hankel, Bull. Soc. Math. Belg. Sér. B 31 (1979) 49–55.
- [15] C. Radoux, Déterminant de Hankel construit sur des polynomes liés aux nombres de dérangements, European J. Combin. 12 (1991) 327–329.
- [16] C. Radoux, Déterminants de Hankel et théorème de Sylvester, in: Séminaire Lotharingien de Combinatoire, Saint-Nabor, 1992, in: Publ. Inst. Rech. Math. Av., Vol. 498, Univ. Louis Pasteur, Strasbourg, 1992, pp. 115– 122.
- [17] C. Radoux, Addition formulas for polynomials built on classical combinatorial sequences, J. Comput. Appl. Math. 115 (2000) 471–477.
- [18] C. Radoux, The Hankel determinant of exponential polynomials: a very short proof and a new result concerning Euler numbers, Amer. Math. Monthly 109 (2002) 277–278.
- [19] B.E. Sagan, A maj statistic for partitions, European J. Combin. 12 (1991) 69-79.
- [20] M. Wachs, D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991) 27–46.