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 The r-cubical Lattice and a Generalization of the cd-index

 R ICHARD  E HRENBORG AND  M ARGARET  R EADDY

 In this paper we generalize the  cd -index of the cubical lattice to an  r - cd -index ,  which we
 denote by  Õ  ( r ) .  The coef ficients of  Õ  ( r ) enumerate augmented Andre ́    r -signed permutations ,  a
 generalization of Purtill’s work relating the  cd -index of the cubical lattice and signed Andre ́
 permutations .  As an application we use the  r - cd -index to determine that the extremal
 configuration which maximizes the Mo ̈  bius function of arbitrary rank selections ,  where all the
 r i ’s are greater than one ,  is the odd alternating ranks ,   h 1 ,  3 ,  5 ,  .  .  . j .
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 1 .  I NTRODUCTION

 The main purpose of this paper is to develop a generalization of the  cd -index for the
 r -cubical lattice  C r .  This lattice is a natural generalization of the cubical lattice ,  that is ,
 the face lattice of a cube .  The cubical lattice of order  n  may be described by taking the
 n th power of the poset  M 2  in Figure 1 and then adjoining a minimal element .  The
 r -cubical lattice is constructed in a similar manner ,  where we instead take a product of
 posets  M r   of the form represented in Figure 1 .  Such a lattice was first studied by
 Metropolis ,  Rota ,  Strehl and White in [12] .  They were interested in Dilworth
 decompositions of the  r -cubical lattice .

 The  ab -index is a non-commutative polynomial which encodes the Mo ̈  bius function
 of rank selections from a poset  P ,  i . e .,  its flag  h -vector or beta invariant .  Equivalently ,
 the  ab -index encodes the flag  f  -vector of  P .  Fine observed that when  P  is an Eulerian
 poset ,  the  ab -index can be written uniquely in the variables  c  5  a  1  b  and  d  5  ab  1  ba
 (see [2]) .  This new polynomial is called the  cd -index .

 The importance of the  cd -index is that it explicitly describes the generalized
 Dehn – Sommerville equations ,  also known as the Bayer – Billera relations [1] .  Purtill
 obtained recursion formulas for the  cd -index of the boolean algebra  B n   and the cubical
 lattice  C n .  In order to do ,  he showed that the coef ficients of each  cd -index enumerate
 Andre ́   permutations and signed Andre ́   permutations ,  respectively .  Andre ́   permuta-
 tions were first studied by Foata and Schu ̈  tzenberger [8 ,  9] .  We show that these two
 recurrences are easy to prove by using the standard  R -labeling of  B n   and  C n   (see the
 arguments before equations (1) and (3)) .

 As a corollary ,  Purtill concluded that the  cd -index of  B n   and  C n   have positive
 coef ficients .  Using a shelling argument ,  Stanley extended this result to showing that the
 cd -index has non-negative coef ficients when  P  is the face poset of a shellable regular
 CW  -sphere .  This class of posets includes face lattices of convex polytopes .

 Although the  r -cubical lattice is not an Eulerian poset ,  we are still able to form its
 ab -index .  We give a recursion for its  ab -index in terms of the non-commutative
 variables  c # s  5  a  1  ( s  2  1)  ?  b ,   d #  s  5  ab  1  ( s  2  1)  ?  ba ,   c  and  d .  Since this recursion
 coincides with Purtill’s  cd -index recurrence for the cubical lattice ,  that is ,  when
 r  5  (2 ,  .  .  .  ,  2) ,  we call it the  r - cd -index ,   Õ  ( C r )  5  Õ  ( r ) .

 In Section 6 we extend Purtill’s notion of signed Andre ́   permutations to augmented
 Andre ́    r -signed permutations .  We show that the coef ficients of  Õ  ( r ) have a
 combinatorial interpretation ,  that is ,  they enumerate augmented Andre ́    r -signed
 permutations .
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 F IGURE  1 .  The Hasse diagrams of the poset  M r   with  r  5  2 and  r  5  5 .

 Finally ,  in Section 7 we maximize the beta invariant of the  r -cubical lattice over
 arbitrary rank selections .  We do this by showing that the  ab -index of  C r ,   Õ  ( r ) ,  has the
 strictly increasing alternating property .  More precisely ,  we prove that the coef ficient of
 the  ab -word  y  w  is larger than the coef ficient of the  ab -word  y  w * when  y    ends in a
 dif ferent letter than  w  begins with and where  w * is obtained from  w  by uniformly
 exchanging the  a ’s and  b ’s .  Thus ,  we can view these inequalities as the edges of an
 n -cube .  Niven established these kind of inequalities when he determined that the
 largest class of permutations in the symmetric group having a fixed descent set is the
 alternating permutations [14] .  Our inequalities imply that the coef ficient of the
 alternating  ab -word  baba  ?  ?  ?   in  Õ  ( r ) is the largest .  In other words ,  the set of ranks
 h 1 ,  3 ,  5 ,  .  .  . j  is the unique extremal configuration for the  r -cubical lattice .

 2 .  T HE   ab - INDEX

 In this section we give a brief introduction to the  ab -index and the  cd -index .  For all
 terminology and notation related to the  cd -index ,  we will follow [23] .  For poset
 terminology ,  we refer the reader to [22] .

 Let  P  be a finite ,  graded poset of rank  n  1  1 with 0 ̂   and 1 ̂  .  Denote the rank function
 of  P  by  r .  For  S  ‘  [ n ]  5  h 1 ,  2 ,  .  .  .  ,  n j ,  we define the  S - rank - selected subposet  to be
 P ( S )  5  h x  P  P :  r  ( x )  P  S j  <  h 0 ̂  ,  1 ̂  j .  Let  a  ( S )  5  a P ( S ) denote the number of maximal
 chains in  P ( S ) and let the  beta in y  ariant  b  ( S )  5  b P ( S ) be defined by  b  ( S )  5  o T  ‘ S

 ( 2 1) u S 2 T  u a  ( T  ) .
 To encode the beta invariant of the poset  P ,  we begin by defining a monomial in the

 non-commutative variables  a  and  b  by  u S  5  u 1  ?  ?  ?  u n  ,  where  u i   is  a  if  i  ̧  S  and  u i   is  b  if
 i  P  S .  (Later when we work with permutations ,  it will be helpful to think of  a  as
 ‘‘ascent’’ and  b  as ‘‘descent’’ . ) As an example ,  if  n  5  5 and  S  5  h 1 ,  4 ,  5 j ,  then
 u S  5  baabb .  Form a non-commutative polynomial ,  called the  ab - index ,  by

 Õ  ( P )  5  O
 S ‘ [ n ]

 b P ( S ) u S .

 The degree of both  a  and  b  is defined to be one so that  Õ  ( P ) is homogeneous of
 degree  n .

 For an  ab -word  w  we denote its length by  u w u .  Let 1 denote the unique word of
 length 0 .  Also ,  the  complement  of the word  w  is the word formed by uniformly
 exchanging the letters  a  and  b .  We denote the complement of  w  by  w * .

 Fine (refer to [2]) observed that if  P  is an Eulerian poset ,  then  Õ  ( P ) can be written
 uniquely as a polynomial in the non-commutative variables  c  5  a  1  b  and  d  5  ab  1  ba .
 This polynomial is called the  cd - index .  See Stanley [23] for an elementary proof of the
 existence of the  cd -index for Eulerian posets .  Since both  c  and  d  are symmetric in  a  and
 b ,  this implies the well-known property that for an Eulerian poset  P  of rank  n  1  1 ,
 b P ( S )  5  b P ( S #  ) ,  where  S #    denotes the complement of  S  in the set [ n ] .  In terms of a
 word  w  and its complement ,  this means that the coef ficient of  w  is equal to the
 coef ficient of  w * in  Õ  ( P ) .

 D EFINITION  2 . 1 .  Let  +   be a linear combination of  ab -words of length  n .  That is ,
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 +  5  o z  :  u z u 5 n  c ( z )  ?  z .  We say that  +   has the  weakly increasing alternating property  if the
 following two conditions hold :
 (1)  If  y    and  w  is a pair of words so that the last letter of the word  y    is dif ferent from
 the first letter of the word  w  and  u y  u  1  u w u  5  n ,  then  c ( y  w )  >  c ( y  w *) .
 (2)  If  w  is a word of length n that begins with  b ,  then  c ( w )  >  c ( w *) .
 If all of the above inequalities are strict ,  then we say that  +   has the  strictly increasing
 alternating property .

 It is easy to see that if  +   has the strictly and  _   has the weakly increasing alternating
 property ,  then their sum  +  1  _   has the strictly increasing alternating property .
 Observe that  +   having the strictly increasing alternating property implies that the
 largest coef ficient in  +   is the coef ficient in front of the alternating word  baba  ?  ?  ?  .

 We say that a linear combination of  ab -words ,   +  5  o z :  u z u 5 n  c ( z )  ?  z , is self  -
 complementary  if ,  for all words  w , c ( w )  5  c ( w *) .

 L EMMA  2 . 2 .  If a linear combination  +   of  ab - words of length n can be expressed as a
 cd - index with non - negati y  e coef ficients , then  +   has the weakly increasing alternating
 property and is self  - complementary . Moreo y  er , if  +   can be expressed as a  cd - index with
 positi y  e coef fiicients then the inequality c ( y  w )  >  c ( y  w *) , where the last letter of the word
 y   is dif ferent from the first letter of the word w , is a strict inequality . Hence , the  ab - words
 with largest coef ficient are the two alternating words  aba  ?  ?  ?   and  bab  ?  ?  ?  .

 L EMMA  2 . 3 .  Let  +   be a linear combination of  ab - words of length n and let  _   be a
 linear combination of  ab - words of length m . If both  +   and  _   ha y  e the weakly increasing
 alternating property and  _   is self  - complementary , then  +  ?  _   also has the weakly
 increasing alternating property .

 Stanley [23] proved that the  cd -index of the face poset of a shellable regular
 CW  -sphere has non-negative coef ficients .  Thus by Lemma 2 . 2 we conclude that the
 ab -index of such posets has the weakly increasing alternating property .  Since convex
 polytopes are shellable regular  CW  -spheres ,  we know that face lattices of convex
 polytopes have the weakly increasing alternating property .

 3 .  R - LABELINGS

 An  edge - labeling  l   of a locally finite poset  P  is a map which assigns to each edge in
 the Hasse diagram of  P  an element from some poset  L .  For us ,   L   will always be a
 linearly ordered poset .  In this case we say that  l   is a  linear edge labeling  (see [7] for a
 further study of linear edge labelings) .  If  x  and  y  is an edge in the poset ,  that is ,   y
 covers  x  in  P ,  then we denote the label on this edge by  l ( x ,  y ) .  A maximal chain
 x  5  x 0  a  x 1  a  ?  ?  ?  a  x k  5  y  in an interval [ x ,  y ] in  P  is called  rising  if the labels are
 weakly increasing with respect to the order of the poset  L ,  that is ,   l ( x 0  ,  x 1 )  < L

 l ( x 1  ,  x 2 )  < L  ?  ?  ?  < L  l ( x k 2 1  ,  x k ) .  An edge-labeling is called an  R - labeling  if for every
 interval [ x ,  y ] in  P  there is a unique rising maximal chain in [ x ,  y ] .

 Let  P  be a poset of rank  n  1  1 with  R -labeling  l .  For a maximal chain
 c  5  h 0 ̂  5  x 0  a  x 1  a  ?  ?  ?  a  x n 1 1  5  1 ̂  j   in  P ,  the  descent set  of the chain  c  is  D ( c )  5
 h i :  l ( x i 2 1  ,  x i )  . L  l ( x i  ,  x i 1 1 ) j .  Observe that  D ( c ) is a subset of the set [ n ] .

 A result of Bjo ̈  rner and Stanley [5 ,  Theorem 2 . 7] says that if  P  is a graded poset of
 rank  n  1  1 , S  ‘  [ n ] ,  and  P  admits an  R -labeling ,  then  b  ( S ) equals the number of
 maximal chains in  P  having descent set  S  with respect to the given  R -labeling  l .  Thus
 we may compute the  ab -index by considering an  R -labeling of the poset .
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 L EMMA  3 . 1 .  Let P be a graded poset of rank n  1  1 . If  l   is an R - labeling of P , then
 the  ab - index of P is equal to

 Õ  ( P )  5 O
 c

 u D ( c ) ,

 where the sum is o y  er all maximal chains c .

 As an example ,  we give the standard  R -labeling for the boolean algebra .  Viewing  B n

 as the poset of all the subsets of [ n ] ordered by inclusion ,  label the edge  A  ’  B  with the
 unique element in  B  2  A .  Observe the maximal chains in  B n   correspond to permuta-
 tions of the set [ n ] .  It is now easy to give a recursion for the  ab -index of the boolean
 algebra .  Consider permutations on the set [ n  1  2] ,  and let  i  1  1 be the position at which
 the element 1 or  n  1  2 occurs first ,  reading from right to left .  Note that there are  i
 elements from the set  h 2 ,  .  .  .  ,  n  1  1 j   to the right of this position .  If  i  5  0 then these
 permutations are enumerated by  Õ  ( B n 1 1 )  ?  c .  If 1  <  i  <  n ,  they are enumerated by
 ( n

 i  )  ?  Õ  ( B n 1 1 2 i )  ?  d  ?  Õ  ( B i ) .  Thus

 Õ  ( B n 1 2 )  5  Õ  ( B n 1 1 )  ?  c  1  O n
 i 5 1

 S n
 i
 D  ?  Õ  ( B n 1 1 2 i )  ?  d  ?     ( B i ) ,  (1)

 where  Õ  ( B 1 )  5  1 .  This formula was established by Purtill in [18 ,  Corollary 5 . 8] using
 Andre ́   permutations .

 Hence ,  by equation (1) ,  we may compute

 Õ  ( B 2 )  5  c ,  Õ  ( B 4 )  5  c 3  1  2  ?  cd  1  2  ?  dc ,

 Õ  ( B 3 )  5  c 2  1  d ,  Õ  ( B 5 )  5  c 4  1  3  ?  c 2 d  1  5  ?  cdc  1  3  ?  dc 2  1  4  ?  d 2 .

 By the recursion (1) it is easy to see that the coef ficients of each  cd -monomial in  Õ  ( B n )
 are positive .  Thus ,  by Lemma 2 . 2 ,  we conclude the following .

 T HEOREM  3 . 2   (Sagan ,  Yeh and Ziegler [21]) .   For arbitrary rank selections S from
 the boolean algebra B n  , the two unique extremal configurations for maximizing the beta
 in y  ariant  b  ( S )  are the following rank selections :

 h 1 ,  3 ,  5 ,  .  .  . j  >  [ n  2  1]  and  h 2 ,  4 ,  6 ,  .  .  . j  >  [ n  2  1] .

 This theorem is implicit in the work of Niven [14] and de Bruijn [6] ,  who studied
 permutations with a given descent set .

 4 .  T HE   r - CUBICAL  L ATTICE

 For  r  a positive integer ,  let  M r   denote the poset formed from an  r -element antichain
 and a maximal element 1 ̂  ,  where each element of the antichain is covered by the
 maximal element 1 ̂  .  See Figure 1 for two examples .

 For a sequence of positive integers  r  5  ( r 1  ,  .  .  .  ,  r n ) ,  define the (multi-indexed)
 r - cubical lattice C r   to be  M r 1

 3  ?  ?  ?  3  M r n
 <  h 0 ̂  j .  This is a graded poset of rank  n  1  1 .

 Indeed ,  this is a lattice ,  since it is a finite join-semilattice .  When  r  5  ( r ,  .  .  .  ,  r ) ,  we will
 denote the poset by  C r

 n ,  and simply call it the  r - cubical lattice .  When  r  5  (2 ,  .  .  .  ,  2) the
 r -cubical lattice is the cubical lattice  C n  ,  that is ,  the face lattice of the  n -dimensional
 cube .

 Another way in which to view the  r -cubical lattice is to consider finite sequences
 A  5  ( A 1  ,  A 2  ,  .  .  .  ,  A max( r ) ) of subsets from the set [ n ]  5  h 1 ,  2 ,  .  .  .  ,  n j ,  such that  A j  >  A k  5  [
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 when  j  ?  k ,  and  i  ̧  A j   when  j  .  r i .  Define the order relation by  A  <  B  if  A i  “  B i   for all
 i  5  1 ,  2 ,  .  .  .  ,  and adjoin a minimal element 0 ̂  .

 The Whitney numbers of the second kind for  C r   are given by elementary symmetric
 functions .  That is ,  the number of elements of rank  n  1  1  2  k  in the  r -cubical lattice is
 the  k th elementary symmetric function  e k ( r 1  ,  .  .  .  ,  r n ) in the variables  r 1  ,  r 2  ,  .  .  .  ,  r n  ,  for
 k  5  0 ,  .  .  .  ,  n .

 The  r -cubical lattice has a very nice  R -labeling described as follows :  for the cover
 relation  A  a  B ,  where  A  ?  0 ̂  ,  label the corresponding edge in the Hasse diagram by
 ( i ,  a ) ,  where  i  is the unique index such that  A i  ?  B i  ,  and let  a  be the singleton element
 in  A i  2  B i  .  Also ,  for the relation 0 ̂  a  B ,  let the label be the special element  G .  Hence ,
 the set of labels  T n   are  T n  5  h G j  <  h ( i ,  j ) :  1  <  j  <  m ,  1  <  i  <  r j j .  Also ,  define the set  T  9 n   to
 be  T  9 n  5  T n  2  h G j .

 So far we have not given a linear order on the set of labels  T n .  We now do this .
 Choose any linear order  L   which satisfies the following condition :

 ( i ,  j )  , L  G  é  i  , r j  and  ( i ,  j )  . L  G  é  i  5  r j  .  (2)

 This means that the labels above the element  G  in the ordering  L   are those of the form
 ( r j  ,  j ) .  It is now straightforward to prove the following .

 L EMMA  4 . 1 .  Let  L   be a linear order on the set T n  satisfying condition  (2) . Then the
 abo y  e - described edge - labeling for the  r - cubical lattice is an R - labeling .

 E XAMPLE  4 . 2 .  A linear order on  T n   satisfying condition (2) is the following .  Define
 G  , L ( r 1  ,  1)  , L  ( r 2  ,  2)  , L  ?  ?  ?  , L  ( r n  ,  n ) .  Order the labels of the form ( i ,  j ) ,  where  i  ,  r j  ,
 by ( i 1  ,  j 1 )  , L  ( i 2  ,  j 2 ) if  j 1  .  j 2  ,  or if  j 1  5  j 2  and  i 1  ,  i 2  .  Finally ,  we say ( i ,  j )  , L  G  if  i  ,  r j .
 Observe that the largest element in the linear order  L   is ( r n  ,  n ) and the  r n  2  1 smallest
 elements are (1 ,  n )  , L  ?  ?  ?  ,  L  ( r n  2  1 ,  n ) .  The linear order  L   satisfies condition (2) ,
 and thus is an  R -labeling of the  r -cubical lattice .

 5 .  A UGMENTED  r - SIGNED  P ERMUTATIONS

 D EFINITION  5 . 1 .  Let  N  be a finite set of cardinality  n  and let  r  be a vector which is
 indexed by the set  N ,  that is ,   r  5  ( r i ) i P N .  An  augmented  r - signed permutation  s   on the
 set  N  is a list of the form

 ( G ,  ( i 1  ,  j 1 ) ,  ( i 2  ,  j 2 ) ,  .  .  .  ,  ( i n  ,  j n )) ,

 where 1  <  i m  <  r j m   and (  j 1  ,  j 2  ,  .  .  .  ,  j m ) is a permutation of the elements in the set  N .  We
 will write  s  0  5  G  and  s k  5  ( i k  ,  j k ) .

 We view the elements  i 1  ,  .  .  .  ,  i n   as signs ;  hence the name  r -signed permutation .  Since
 we list the special element  G  first ,  we say that the permutation is augmented .  Thus if
 we exclude the special element  G ,  we may say that the permutation is  non - augmented .
 Usually ,  we will consider the set  N  5  [ n ]  5  h 1 ,  2 ,  .  .  .  ,  n j .  For 0  <  i  <  j  <  n ,  we let
 [ i ,  j ]  5  h i ,  i  1  1 ,  .  .  .  ,  j j .  We use the notation  s  u [ i ,j ]  to denote the restricted permutation
 s  u [ i ,j ]  5  ( s i  ,  s i 1 1  ,  .  .  .  ,  s j ) .

 Let  L   be a linear order on the set  T n .  The descent set of an augmented  r -signed
 permutation ,   s  5  ( G  5  s  0  ,  s  1  ,  .  .  .  ,  s n ) ,  with respect to  L   is the set  D L ( s  )  5  h i :  s i 2 1  . L

 s i j .  The same definition also applies to non-augmented  r -signed permutations .
 The maximal chains in the  r -cubical lattice correspond to augmented  r -signed

 permutations on the set [ n ] .  Thus the number of augmented  r -signed permutations
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 having a certain descent set is equal to the number of maximal chains with this same
 descent set .

 L EMMA  5 . 2 .  Let  L   be a linear order on the set T  9 n . The number of non - augmented
 r - signed permutations on the set  [ n ]  with descent set S  ‘  [ n  2  1]  is equal to the number of
 permutations in the symmetric group on n elements with descent set S times r 1  ?  r 2  ?  ?  ?  r m .

 P ROOF .  Consider first the following linear order  G   on  T  9 n :  ( i 1  ,  j 1 )  # G  ( i 2  ,  j 2 ) if and
 only if  j 1  ,  j 2  or ,   j 1  5  j 2  and  i 1  #  i 2  .  It is easy to see that the lemma holds for this linear
 order  G  .

 We will prove the lemma for any other linear order by changing a linear order on the
 set  T  9 n   into another linear order by transposing adjacent entries ,  and showing the
 number of non-augmented  r -signed permutations having descent  S  will remain
 constant .  Thus it is enough to consider two linear orders  L   and  L 9  on the set  T  9 n   which
 only dif fer in that two adjacent elements ,   x  and  y ,  are transposed .  That is ,  we have
 x  , L  y  and  y  , L 9  x .

 Let  P  and  P 9  be the set of non-augmented  r -signed permutations having descent  S  in
 the linear order  L ,  respectively  L 9 .  Let  s   be a non-augmented  r -signed permutation
 in the set  P  2  P 9 .  Since  s  P  P ,  but  s  ̧  P 9 ,  we know that changing the underlying
 order from  L   to  L 9  af fects the descent set of  s .  Hence  s   has the form
 s  5  ( s  1  ,  .  .  .  ,  s i  ,  z 1  ,  z 2  ,  s i 1 3  ,  .  .  .  ,  s n ) ,  where  h z 1  ,  z 2 j  5  h x ,  y j .  Consider  s 9  5
 ( s  1  ,  .  .  .  ,  s i  ,  z 2  ,  z 1  ,  s i 1 3  ,  .  .  .  ,  s n ) .  It is easy to see that  s  9  lies in the set  P 9  2  P .
 Moreover ,  the mapping  s  S  s 9  is bijective .  Hence  u P  2  P 9 u  5  u P 9  2  P u ,  which implies
 that  u P u  5  u P 9 u .  Thus the proof is complete .  h

 We denote the  ab -index of the  r -cubical lattice by  Õ  ( C r )  5  Õ  ( r )  5  Õ  ( r 1  ,  .  .  .  ,  r n ) .  For
 a vector  r  5  ( r 1  ,  .  .  .  ,  r n ) and a positive integer  s ,  we write ( r ,  s ) for the vector
 ( r 1  ,  .  .  .  ,  r n  ,  s ) .  Let  c # s  5  a  1  ( s  2  1)  ?  b ,  and  d #  s  5  ab  1  ( s  2  1)  ?  ba .  For  N  a finite subset of
 P  5  h 1 ,  2 ,  .  .  . j ,  define the vector  r N   by ( r m 1  ,  .  .  .  ,  r m n

 ) ,  where  N  5  h m 1  ,  .  .  .  ,  m n j .  Another
 useful notation is  P ( N )  5  p m P N  r m .

 P ROPOSITION  5 . 3 .  The  ab - index of the  ( r ,  s )- cubical lattice satisfies the following
 recurrence :

 Õ  ( r ,  s )  5  Õ  ( r )  ?  c # s  1  O
 I 1 J 5 [ n ]

 I ? [

 P ( I )  ?  Õ  ( r J )  ?  d #  s  ?  Õ ( B u I u ) ,

 where  r  5  ( r 1  ,  r 2  ,  .  .  .  ,  r n )  and  Õ  ( C  [ )  5  1 .

 E XAMPLE  5 . 4 .  With the above recurrence we may compute the following :

 Õ  ( C [ )  5  1 ,

 Õ  ( C p )  5  c # p  ,

 Õ  ( C p ,q )  5  c # p c # q  1  p  ?  d #  q  ,

 Õ  ( C p ,q ,r )  5  c # p c # q c # r  1  p  ?  d #  q c #  r  1  p  ?  c # q d #  r  1  q  ?  c # p d #  r  1  pq  ?  d #  r c .

 P ROOF OF  P ROPOSITION  5 . 3 .  Fix the linear order  L   on the set  T n 1 1  of labels to be the
 one described in Example 4 . 2 .  Consider an augmented ( r ,  s )-signed permutation
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 s  5  ( G  5  s  0  ,  s  1  ,  .  .  .  ,  s n 1 1 ) on the set [ n  1  1] .  Let  k  be the index such that  s k  5
 ( i ,  n  1  1) ,  that is ,  the position of the element  n  1  1 .  Let  J  be the set of elements from
 [ n ]   that appears before the element  n  1  1 in the permutation ,  and let  I  be the set of
 elements from [ n ] that appears after .  We can decompose the permutation  s   into an
 augmented  r J -signed permutation on the set  J  and a non-augmented  r I -signed
 permutation on the set  I .  Namely ,  the augmented  r J -signed permutation is described by
 s  u [0 ,k 2 1]  and the non-augmented  r I -signed permutation is  s  u [ k 1 1 ,n 1 1] .

 There are two cases ,  namely  I  5  [   and  I  ?  [ .  Consider the first case .  If  i ,  the sign of
 the element  n  1  1 ,  is equal to  s ,  then the permutation will end with an ascent .  If  i  ,  s ,
 then the permutation will end with a descent .  Thus these permutations are enumerated
 by  Õ  ( r )  ?  ( a  1  ( s  2  1)  ?  b )  5  Õ  ( r )  ?  c # s  .

 Now consider the second case ,   I  ?  [ .  If  i  5  s ,  then there is an ascent – descent
 between the permutation  s  u [0 ,k 2 1] ,  and the permutation  s  u [ k 1 1 ,n 1 1] .  Similarly ,  if  i  ,  s
 then there is a descent – ascent between the two parts .  Hence we have the term

 Õ  ( r J )  ?  ( ab  1  ( s  2  1)  ?  ba )  ?  P ( I )  ?  Õ  ( B u I u )  5  P ( I )  ?  Õ  ( r J )  ?  d #  s  ?  Õ  ( B u I u ) .

 By summing over all decompositions  I  1  J  5  [ n ] ,  the proposition follows .  h

 When we set  r  5  (2 ,  .  .  .  ,  2) in Proposition 5 . 3 ,  we obtain

 Õ  ( C n 1 1 )  5  Õ  ( C n )  ?  c  1  O n
 i 5 1

 S n

 i
 D  ?  2 i  ?  Õ  ( C n 2 i )  ?  d  ?  Õ  ( B i ) ,  (3)

 where  Õ  ( C 0 )  5  1 .  This identity was first established by Purtill [18 ,  Corollary 5 . 12] .
 However ,  the proof given here is a direct argument .

 E XAMPLE  5 . 5 .  Specializing Example 5 . 4 to the cubical lattice ,  we obtain the
 following :

 Õ  ( C 0 )  5  1 ,

 Õ  ( C 1 )  5  c ,
 Õ  ( C 2 )  5  c 2  1  2  ?  d ,
 Õ  ( C 3 )  5  c 3  1  4  ?  cd  1  6  ?  dc .

 By the recursion (3) it is easy to see that the coef ficients of each  cd -monomial in
 Õ  ( C n )   are positive .  Thus by Lemma 2 . 2 we conclude the following :

 T HEOREM  5 . 6 (Readdy [20]) .  For arbitrary rank selections s from the cubical lattice
 C n  , the two unique extremal configurations which maximize the beta - in y  ariant  b  ( S )  are
 the following rank selections :

 h 1 ,  3 ,  5 ,  .  .  . j  >  [ n ]  and  h 2 ,  4 ,  6 ,  .  .  . j  >  [ n ] .

 6 .  A NDRE ́   P ERMUTATIONS

 Purtill showed a relation between the  cd -index of the cubical lattice and Andre ́
 signed permutations [18] .  In this section we define augmented Andre ́    r -signed
 permutations and obtain a relation between these permutations and the  r - cd -index of
 the  r -cubical lattice .  We study two sets of  r -signed permutations ,   !  r   and  1  r

 0 .  The set
 !  r  corresponds to the  r -cubical lattice and the set  1  r

 0  to the boolean algebra .  We also
 enumerate the number of augmented Andre ́    r -signed permutations .  When we set
 r  5  (2 ,  .  .  .  ,  2) ,  the results of this section specialize to Purtill’s work .
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 Define the two sets  T  and  T  9  by  T  9  5  h ( i ,  j ) :  j  P  P ,  1  <  i  <  r j j   and  T  5  T  9  <  h G j .
 Observe that the entries of  r -signed permutations are elements of  T .  Throughout what
 follows in this section we fix  L ,  a linear order on the set  T .  (Note that in the proof of
 Proposition 6 . 5 we will use another linear order on the set  T  9 . ) Define  G  , L  ( r 1  ,  1)
 , L  ( r 2  ,  2)  , L  ?  ?  ?   .  Order the labels of the form ( i ,  j ) ,  where  i  ,  r j  ,  by ( i 1  ,  j 1 ) , L  ( i 2  ,  j 2 )
 if  j 1  .  j 2  ,  or if  j 1  5  j 2  and  i 1  ,  i 2  .  Finally ,  say that ( i ,  j )  , L  G  if and only if  i  ,  r j .  This is
 an extension of the linear order used in Example 4 . 2 .

 D EFINITION  6 . 1 .  Let  r  be a vector which is indexed by a finite set  N ,  with
 u N u  5  n  .  0 ,  that is ,   r  5  ( r i ) i P N .  We may assume that  N  ‘  P .  We say that an augmented
 r -signed permutation  s  5  ( G  5  s  0  ,  s  1  ,  .  .  .  ,  s n ) on the set  N  is an  augmented Andre ́
 r - signed permutation  if the following two conditions are satisfied .
 (1)  For all 1  <  i  ,  j  <  n ,  if  s i 2 1  5  max L h s i 2 1  ,  s i  ,  s j 2 1  ,  s j j   and  s j  5  min L h s i 2 1  ,  s i  ,
 s j 2 1  ,  s j j ,  then there exists a  k ,  with  i  ,  k  ,  j ,  such that  s i 2 1  , L  s k .
 (2)  For  x  5  max  N ,  ( r x  ,  x )  5  s m   for some 1  <  m  <  n  and  s  u [0 ,m 2 1]  is an augmented
 Andre ́    r J -signed permutation on the set  J ,  where  J  5  h  y  P  N :  ( z ,  y )  5  s k   for some
 1  <  k  <  m  2  1 j .
 The permutation ( G ) is defined to be an augmented Andre ́    r -signed permutation on
 the set  N  5  [ .

 Let  s  5  ( G  5  s  0  ,  s  1  ,  .  .  .  ,  s n ) be an augmented  r -signed permutation on a set  N  of
 cardinality  n .  We say that  s   has a  double descent  if there is an index  i ,  where
 1  <  i  <  n  2  1 ,  such that  s   has a descent at the  i th and ( i  1  1)st positions .  In other
 words ,   i  and  i  1  1 are contained in the descent set  D L ( s  ) of  s .  Observe that condition
 (1) of Definition 6 . 1 implies that the permutation  s   has no double descents .

 A non-augmented  r -signed permutation satisfying condition (1) in Definition 6 . 1 is
 called a  non - augmented Andre ́    r - signed permutation .  (Note that for the non-augmented
 case we need to reformulate the beginning of condition (1) as ,  ‘For all 2  <  i  ,  j  <
 n  .  .  . ’ . )   We denote the set of all augmented Andre ́    r -signed permutations by  !  r   and the
 set of all non-augmented Andre ́    r -signed permutations by  1  r .  Furthermore ,  we denote
 the set of all non-augmented Andre ́    r -signed permutations which begin with its smallest
 element (with respect to the linear order  L ) by  1  r

 0 .  That is ,

 1  r
 0  5  h ( s  1  ,  s  2  ,  .  .  .  ,  s n )  P  1  r :  s  1  5  min L h s  1  ,  s  2  ,  .  .  .  ,  s n jj .

 We will mainly work with the sets  !  r   and  1  r
 0 .

 The following two lemmas describe how Andre ́    r -signed permutations behave under
 restriction .  For ease in notation ,  we define  N ( s  ,  i ,  j )  5  h  y  P  N :  ( z ,  y )  5  s k   for some
 i  <  k  <  j j .

 L EMMA  6 . 2 .  Let  s  5  ( G ,  s  1  ,  .  .  .  ,  s n )  be an augmented Andre ́    r - signed permutation
 on an index set N of cardinality n . Let  0  <  j  <  n , and let J be the set N ( s  ,  1 ,  j ) . Then the
 restriction  s  3 [0 ,j ]   is an augmented Andre ́    r J - signed permutation on the index set J .
 Furthermore , let  1  <  i  <  j  <  n and let K be the set N ( s  ,  i ,  j ) . Then the restriction  s  3 [ i ,j ]   is a
 non - augmented Andre ́    r K - signed permutation on the index set K .

 Similarly , let  s  5  ( s  1  ,  .  .  .  ,  s n )  be a non - augmented Andre ́    r - signed permutation on an
 index set N of cardinality n . Let  1  <  i  <  j  <  n and let K be the set N ( s  ,  i ,  j ) . Then the
 restriction  s  3 [ i ,j ]   is a non - augmented Andre ́    r K - signed permutation on the index set K .

 The proof of Lemma 6 . 2 follows from the definitions .

 C OROLLARY  6 . 3 .  If  s  5  ( G ,  s  1  ,  .  .  .  ,  s n )  is an augmented Andre ́    r - signed
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 permutation , then G  , L  s  1  . In other words , e y  ery augmented Andre ́    r - signed permuta-
 tion begins with an ascent .

 L EMMA  6 . 4 .  Let  s  5  ( G ,  s  1  ,  .  .  .  ,  s n )  be an augmented Andre ́    r - signed permutation
 on an index set N of cardinality n . Assume that x  5  max  N , and  s m  5  ( r x  ,  x ) . Let I be the
 set N ( s  ,  m  1  1 ,  n ) . Then the restriction  s  3 [ m 1 1 ,n ]  5  ( s m 1 1  ,  .  .  .  ,  s n )  is a non - augmented
 Andre ́    r I - signed permutation on the index set I . Moreo y  er ,  s  3 [ m 1 1 ,n ]   belongs to the set
 1  r I

 0  .
 Similarly , let  s  5  ( s  1  ,  .  .  .  ,  s n )  be a non - augmented Andre ́    r - signed permutation on an

 index set N of cardinality n . Assume that  s m  5  max L h s  1  ,  .  .  .  ,  s n j . Let I be the set
 N ( s  ,  m  1  1 ,  n ) . Then the restriction  s  3 [ m 1 1 ,n ]  5  ( s m 1 1  ,  .  .  .  ,  s n )  is a non - augmented
 Andre ́    r I - signed permutation on the index set I . Moreo y  er ,  s  3 [ m 1 1 ,n ]   belongs to the set
 1  r I

 0  .

 For  s   a non-augmented Andre ́    r -signed permutation of an  n -set ,  the  y  ariation  of  s   is
 given by  U ( s  )  5  u S  ,  where  S  is the descent set of  s   taken with respect to  L   and  u S   is
 the  ab -word defined in Section 2 .  The  reduced  y  ariation  of  s  P  1  r

 0 ,  which we denote by
 V  ( s  ) ,  is formed by replacing each  ab  in  U ( s  ) with  d  and then replacing each
 remaining  a  by a  c .  Observe that this is always possible since an element in  1  r

 0  does not
 begin with a descent and cannot have any double descents .

 We recursively define the reduced variation  V  ( s  ) for an augmented Andre ́    r -signed
 permutation  s   on the set  N  by recursion .  Assume that  N  has cardinality  n .  If
 s m  5  ( r x  ,  x )  5  ( s ,  x ) ,  where  x  5  max  N ,  then

 V  ( s  )  5 H V  ( s  3 [0 ,m 2 1] )  ?  d #  s  ?  V  ( s  3 [ m 1 1 ,n ] )
 V  ( s  3 [0 ,n 2 1] )  ?  c # s

 if  m  ,  n ,
 if  m  5  n ,

 with  V  ( G )  5  1 .  This definition makes sense since  s  3 [ m 1 1 ,n ]  belongs to the set  1  r I
 0  .

 P ROPOSITION  6 . 5 .  For  r  5  ( r 1  ,  .  .  .  ,  r n ) , the following equality holds :

 O
 s P 1  0

 r
 V  ( s  )  5  P ( N )  ?  Õ  ( B n ) .

 We denote the sum by V  ( 1  r
 0 ) .

 P ROOF .  This proof is similar to the proof of Lemma 5 . 2 .  First ,  one may easily show
 that  V  ( 1  r

 0 ) does not depend on the linear order of the set of labels  T  9 n .  That is ,  if we
 transpose two adjacent entries in a linear order ,  the sum of the reduced variation of
 non-augmented Andre ́    r -signed permutations which belong to  1  r

 0  will remain the same .
 Thus we may consider the following linear order  G   on  T  9 n :  ( i 1  ,  j 1 )  < G  ( i 2  ,  j 2 ) if and only
 if  j 1  ,  j 2  or ,   j 1  5  j 2  and  i 1  <  i 2 .

 We find a recursion formula for  V  ( 1  r
 0 ) by looking at where the largest element

 occurs in each non-augmented Andre ́    r -signed permutation .  Let the index set be [ n  1  1]
 and denote  r n 1 1  by  s .

 C LAIM  6 . 6 .  There exists a bijection between the two sets

 1  r , s
 0  and  1  r

 0  3  [ s ]  <  !

 I 1 J 5 [ n ]
 1 P J ,I ? [

 1  r J
 0  3  [ s ]  3  1  r I

 0  ,

 where all the unions are disjoint and  3    denotes the Cartesian product .
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 The proof of the claim is very similar to the proof of Proposition 6 . 7 .  Observe that
 1  P  J ,  since the element  s  1  5  min G ( s  1  ,  s  2  ,  .  .  .  ,  s n 1 1 ) is of the form ( i ,  1) .

 Summing the reduced variation over  1  r , s
 0   we find that

 V  ( 1  r , s
 0  )  5  V  ( 1  r

 0 )  ?  s  ?  c  1  O
 I 1 J 5 [ n ]
 1 P J ,I ? [

 V  ( 1  r J
 0  )  ?  s  ?  d  ?  V  ( 1  r I

 0  ) .

 By equation (1) one sees that the quantity  P ( N )  ?  Õ  ( B n ) satisfies the same recursion
 and initial conditions as  V  ( 1  r

 0 ) .  h

 P ROPOSITION  6 . 7 .  There exists a bijection between the two sets

 !  r , s  and  !  r  <  !

 I 1 J 5 [ n ]
 I ? [

 ! r J  3  1 r I
 0  ,

 where all the unions are disjoint and  3    denotes the Cartesian product .

 P ROOF .  Let the index set be [ n  1  1] and denote  r n 1 1  by  s .  We break the augmented
 Andre ́   ( r ,  s )-signed permutations at the point at which the largest element ( r n 1 1  ,  n  1  1)
 occurs .  By doing so ,  we have the following map :

 F  :  !  r , s
 5  ! r  <  !

 I 1 J 5 [ n ]
 I ? [

 !  r J  3  1  r I
 0  .

 To see that  F  is bijective ,  it is enough to prove that  F  has an inverse .  Given
 s 9  5  ( G ,  s  1  ,  .  .  .  ,  s m 2 1 )  P  !  r J   and  s 0  5  ( s m 1 1  ,  .  .  .  ,  s n 1 1 )  P  1  r I

 0  ,  let  s  5  ( s 9 ,  ( r n 1 1  ,  n  1
 1) ,  s 0 ) .  It is easy to see that  s   satisfies condition (2) in Definition 6 . 1 .  To show that  s
 also satisfies condition (1) ,  it is enough to consider the following two cases .  First ,  when
 i  ,  m  and  m  ,  j ,  let  k  5  m  in condition (1) .  The remaining case is when  i  2  1  5  m  and
 m  1  1  ,  j .  However ,  this case will not occur ,  since  s  0   belongs to  1  r I

 0  .  Hence  s   is an
 augmented Andre ́   permutation ,  and lies in the set  !  r , s .  Thus we conclude that  F  is a
 bijection .  h

 T HEOREM  6 . 8 .  For  r  5  ( r 1  ,  .  .  .  ,  r n ) , the following equality holds :

 Õ  ( r )  5  O
 s P !  r

 V  ( s  ) .

 We denote this sum by V  ( ! r )  and call it the  non-commutative augmented Andre ́
 r -signed polynomial .

 P ROOF .  It is enough to show that the non-commutative augmented Andre ́    r -signed
 polynomial satisfies the same recurrence as the one given for  Õ  ( r ) in Proposition 5 . 3 .
 The recursion formula will follow by the bijection given in Proposition 6 . 7 .  Summing
 the reduced variation over  !  r , s   we find that

 V  ( ! r , s )  5  V  ( !  r )  ?  c # s  1  O
 I 1 J 5 [ n ]

 I ? [

 V  ( !  r J )  ?  d #  s  ?  V  ( 1  r I
 0  ) .  h

 We will end this section by enumerating augmented Andre ́    r -signed permutations .
 That is ,  we set  r  5  ( r ,  .  .  .  ,  r ) ,  where  r  has length  n .  By Proposition 6 . 5 we know that
 V  ( 1  r

 0 )  5  r n  ?  Õ  ( B n ) .  Hence ,  by the fact that the exponential generating function of the
 number of alternating permutations is given by sec( x )  1  tan( x ) ,  we may derive that the
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 exponential generating function for the number of non-augmented Andre ́    r -signed
 permutations is sec( rx )  1  tan( rx ) .  By Theorem 6 . 8 we obtain a recursion for the
 number of augmented Andre ́    r -signed permutations .  Solving this recursion we obtain
 the following :

 T HEOREM  6 . 9 .  The exponential generating function of the number of augmented
 Andre ́   r - signed permutations is

 O
 n > 0

 g n  ?
 x n

 n !
 5  r –  1

 1  2  sin( rx )
 .

 By applying the Hardy – Littlewood – Karamata Tauberian Theorem (see [3]) to this
 generating function we have the following :

 L EMMA  6 . 10 .  When n  5  ̀  , the number of augmented Andre ́   r - signed permutations
 has the asymptotics

 g n  ,
 1

 G  (2 / r )
 ?  S  8

 π  2 D 1/ r

 ?  n (2/ r ) 2 1  ?  S 2 r

 π  D
 n

 ?  n ! .

 7 .  A RBITRARY  R ANK  S ELECTIONS

 In this section we consider the problem of maximizing the beta invariant of the
 r -cubical lattice over arbitrary rank selections .  We will do so by showing that  Õ  ( C r N )
 has the strictly increasing alternating property .

 We will assume that  r 1  ,  r 2  ,  .  .  .  are all positive integers greater than or equal to 2 .  For
 N  a finite subset of  P  5  h 1 ,  2 ,  .  .  . j ,   u N u  5  n ,  we define the vector  r N   by ( r m 1

 ,  .  .  .  ,  r m n
 ) ,

 where  N  5  h m 1  ,  .  .  .  ,  m n j .  For an  ab -word  w  of length  n ,  we define  b  ( w ,  N ) to be the
 coef ficient of  w  in the  ab -index  Õ  ( C  r N ) .  Thus  b  ( w ,  N ) is a symmetric function in the
 variables  r m 1

 ,  .  .  .  ,  r m n
 .  Also ,  we let  b B ( w ) be the coef ficient of  w  in the  ab -index of the

 boolean algebra ,   Õ  ( B u w u 1 1 ) .  Thus we have the two identities :

 Õ  ( C  r N )  5 O
 w

 b  ( w ,  N )  ?  w  and  Õ  ( B n 1 1 )  5 O
 w

 b B ( w )  ?  w ,

 where  w  ranges over all  ab -words of length  n .  Observe that since the coef ficients
 b  ( w ,  N )   enumerate augmented  r -signed permutations ,  we know that they are non-
 negative .  We also have the following recursion for them :

 L EMMA  7 . 1 .  Let E be a linear map from symmetric functions in the  y  ariables
 r 1  ,  .  .  .  ,  r n  to symmetric functions in the  y  ariables r 1  ,  .  .  .  ,  r n 1 1   such that

 E ( e i ( r 1  ,  .  .  .  ,  r n ))  5  e i ( r 1  ,  .  .  .  ,  r n 1 1 ) .

 Then  b  ( w ,  [ n ])  may be computed by the following relations :

 b  (1 ,  [ )  5  1 ,

 b  ( a w ,  [ n  1  1])  5  E ( b  ( w ,  [ n ])) ,

 b  ( b w ,  [ n  1  1])  5  b B ( w )  ?  e n 1 1 ( r 1  ,  .  .  .  ,  r n 1 1 )  2  E ( b  ( w ,  [ n ])) ,

 where w has length n .

 This lemma implies that  b  ( w ,  N ) may be written as a linear combination of the
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 elementary symmetric functions in the variables  r m 1
 ,  .  .  .  ,  r m n

 .  Thus  b  ( w ,  N ) ,  viewed as
 a function of  r m i

 ,  will be a polynomial of degree one .
 An alternative way to compute  b  ( w ,  [ n ]) is by a determinant .  MacMahon gave a

 determinantal identity for the number of permutations in the symmetric group having a
 fixed descent set [13 ,  Article 157] .  An equivalent determinant was given by Niven [14] .
 By generalizing this determinant ,  we obtain a closed form formula for  b  ( w ,  [ n ]) .  Here
 e k   is the  k th elementary symmetric function  e k ( r 1  ,  .  .  .  ,  r n ) .

 L EMMA  7 . 2 .  Let n be a positi y  e integer and let k 1  ,  .  .  .  ,  k r  be a sequence of integers
 such that  1  <  k 1  ,  k 2  ,  ?  ?  ?  ,  k r  <  n . Let S be the set  h n  1  1  2  k r  ,  .  .  .  ,  n  1  1  2  k 1 j  ‘  [ n ] .
 Then

 b  ( u S  ,  [ n ])  5  det

 1

 ? ? ?

 1

 1

 S k 1

 k 1
 D

 ? ? ?

 S  k r

 k 1
 D

 e k 1

 ?  ?  ?

 ?  ?  ?

 ?  ?  ?

 ?  ?  ?

 S k 1

 k r
 D

 ? ? ?

 S k r

 k r
 D

 e k r

 .C D
 For an  ab -word  w  5  w 1 w 2  ?  ?  ?  w n   of length  n ,  define ,  for 0  <  i  <  n , w ( i )  5  w 1  ?  ?  ?  w i   and

 w (( i ))  5  w n 2 i 1 1  ?  ?  ?  w n .  Also ,  we will need the following two notions :

 S a b ( w )  5  h i :  w  5  w  ( i )  ab  w (( n 2 i 2 2)) j ,

 S b a ( w )  5  h i :  w  5  w  ( i )  ba  w (( n 2 i 2 2)) j ,

 where  n  is the length of  w .  Observe that  S a b ( w ) , S b a ( w )  ‘  h 0 ,  1 ,  .  .  .  ,  n  2  2 j .
 Since the  cd -index of the boolean algebra has positive coef ficients (this may be

 verified by equation (1)) ,  we deduce the following strict inequality :

 b B ( y  w *)  .  b B ( y  w )  when  y  ((1))  5  w (1) .

 This fact will be useful to us later .  Similarly ,  for the cubical lattice ,  that is when
 r  5  (2 ,  .  .  .  ,  2) ,  we also know that the  cd -index has positive coef ficients .  Thus the same
 strict inequality holds .  Since the cubical lattice is Eulerian ,  we know that  b  ( w ,  [ n ])
 attains a maximum exactly when  w  is alternating ,  that is ,  when  w  5  baba  ?  ?  ?

 n

   or
 C BDB E

 w  5  abab  ?  ?  ?
 n

 .
 C BDB E

 L EMMA  7 . 3 .  Let  1  <  k  <  n . Let w be an  ab - word of length k  2  1 , and  y    be an  ab - word
 of length n  2  k . Then

 b B ( w )  ?  O
 I 1 J 5 [ n ]
 u J u 5 n 2 k

 P ( I )  ?  b  ( y  ,  J )  5  b  ( y  a  w ,  [ n ])  1  b  ( y  b  w ,  [ n ]) .

 P ROOF .  The right-hand side of the equality enumerates augmented  r -signed
 permutations having descent set corresponding to the  ab -words  y  a  w  or  y  b  w .  Thus
 we are counting augmented  r -signed permutations with either an ascent or a descent at
 position  n  2  k  1  1 .  Hence we can enumerate such permutations by first choosing an
 augmented  r -signed permutation on the entries  J  ‘  [ n ] with descent set corresponding
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 to  y  ,  where  J  has cardinality  n  2  k .  Then we can independently choose a non-
 augmented permutation on the entries [ n ]  2  J  5  I  with descent set corresponding to  w .
 By Lemma 5 . 2 this may be done in  b B ( w )  ?  p i P I  r i  5  b B ( w )  ?  P ( I ) possible ways .  h

 There is a similar statement for the boolean algebra .  As in Lemma 7 . 3 ,  let  w  be an
 ab -word of length  k  2  1 and let  y    be an  ab -word of length  n  2  k .  Then

 S n  1  1
 k

 D  ?  b B ( w )  ?  b B ( y  )  5  b B ( y  a  w )  1  b B ( y  b  w ) .

 This statement was already known to MacMahon in his study of Simon Newcomb’s
 problem .  He called it ‘The Multiplication Theorem’ [13 ,  Article 159] .

 L EMMA  7 . 4 .  Let w be an  ab - word of length k  1  1  that begins with  b .   For any function
 f on  ab - words of length k , the following identity holds :

 f  ( w  (( k )) )  5  f  ( w ( k ) )  ?  H  1  if  w  ((1))  5  b
 2 1  if  w ((1))  5  a

 J
 1  O

 j P S b a ( w )
 f  ( w (  j )  a  w  (( k 2 j 2 1)) )  1  f  ( w  (  j )  b  w (( k 2 j 2 1)) )

 2  O
 j P S a b ( w )

 f  ( w (  j )  a  w  (( k 2 j 2 1)) )  1  f  ( w  (  j )  b  w (( k 2 j 2 1)) ) .

 T HEOREM  7 . 5 .  Let  r  5  ( r 1  ,  .  .  .  ,  r n ) , where r 1  ,  .  .  .  ,  r n  >  2 , and at least one entry is
 greater than or equal to  3 . Then the  ab - index of the  r - cubical lattice C r   has the strictly
 increasing alternating property .

 C OROLLARY  7 . 6 .  Let  r  5  ( r 1  ,  .  .  .  ,  r n ) , where r 1  ,  .  .  .  ,  r n  >  2 , and at least one entry is
 greater than or equal to  3 . For arbitrary rank selections S  ‘  [ n ]  of the  r - cubical lattice C r ,
 b  ( S )  attains a unique maximum when we take S to be S  5  h 1 ,  3 ,  5 ,  .  .  . j  >  [ n ] .

 When  r  5  (2 ,  .  .  .  ,  2) the lattice  C r   is the cubical lattice  C n .  As was observed in
 Theorem 5 . 6 ,  this lattice has two extremal configurations ,  namely  h 1 ,  3 ,  5 ,  .  .  . j  >  [ n ] and
 h 2 ,  4 ,  6 ,  .  .  . j  >  [ n ] .  When at least one of the  r i ’s equals 1 ,  Theorem 7 . 5 does not hold .

 P ROOF OF  T HEOREM  7 . 5 .  By symmetry in the  r i ’s ,  we may assume that  r 1  >  3 .  The
 proof is by induction on  n .  When  n  5  1 ,  all we need to check is that  b  ( b ,  h 1 j )  .
 b  ( a ,  h 1 j ) ,  which is indeed true since  r 1  2  1  .  1 .

 Let us now assume that the theorem holds for all values less than or equal to  n ,  and
 that we would like to prove it for  n  1  1 .  Say that  r n 1 1  5  s .  We now consider the
 ( r 1  ,  .  .  .  ,  r n  ,  s )-cubical lattice ,  where  s  >  2 .  Let  _   denote the coef ficient of the linear
 term in  s  in the expression  Õ  ( r ,  s ) .  Then we may write

 Õ  ( r ,  s )  5  Õ  ( r ,  2)  1  ( s  2  2)  ?  _ .

 The theorem will follow once we are able to show that  Õ  ( r ,  2) has the strictly
 increasing alternating property and  _   has the weakly increasing alternating property .
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 We begin by showing that  Õ  ( r ,  2) has the strictly increasing alternating property .
 Recall the recursion formula for  Õ  ( r ,  s ) in Proposition 5 . 3 .  Observe that  c # 2  5  a  1  b  5  c
 and  d #  2  5  ab  1  ba  5  d .  We have

 Õ  ( r ,  2)  5  Õ  ( r )  ?  c  1  O
 I 1 J 5 [ n ]

 I ? [

 P ( I )  ?  Õ  ( r J )  ?  d  ?  Õ  ( B u I u ) .  (4)

 By Lemma 2 . 3 we know that each term in equation (4) has the weakly increasing
 alternating property .  Hence this sum has the weakly increasing alternating property .
 We claim it also has the strictly increasing property .  Let  y    and  w  be words such that
 u y  u  1  u w u  5  n .  Assume that  y  5  1 and  w  (1)  5  b ,  or  y  ((1))  ?  w (1) .  Consider the coef ficients
 of  y  w  and  y  w * in the two terms

 d  ?  Õ  ( B n )  and  ( a  1  ( r 1  2  1) b )  ?  d  ?  Õ  ( B n 2 1 ) .

 These terms correspond to  J  5  [   and  J  5  h r 1 j   in  Õ  ( r ,  2) .  In the first term we know that
 strict inequality will hold except when  u y  u  5  0 and  u y  u  5  2 .  In the second term we know
 that strict inequality will hold except when  u y  u  5  1 and  u y  u  5  3 .  Since this covers all
 possibilities for the length of  y  ,  we know that  Õ  ( r ,  2) has the strictly increasing
 alternating property .

 Recall that  _  5  [ s ] Õ  ( r ,  s ) ,  where [ s ] denotes the coef ficient of the linear term in the
 variable  s .  By the recursion formula in Proposition 5 . 3 ,  we have

 _  5  Õ  ( r )  ?  b  1  O
 I 1 J 5 [ n ]

 I ? [

 P ( I )  ?  Õ  ( r J )  ?  ba  ?  Õ  ( B u I u ) .

 We would like to prove that  _   has the weakly increasing alternating property .  This
 follows from two claims .

 C LAIM  7 . 7 .  Let  y    and w be  ab - words of lengths n  2  k and k  1  1  respecti y  ely . Assume
 that  y    ends with the letter  a  or  y    is empty , and that w begins with the letter  b .   Then the
 following inequality holds :

 [ s ] b  ( y  w ,  [ n  1  1])  >  [ s ] b  ( y  w * ,  [ n  1  1]) .

 C LAIM  7 . 8 .  Let  y    and w be  ab - words of lengths n  2  k and k  1  1  respecti y  ely . Assume
 that  y    ends with the letter  b  and that w begins with the letter  b .   Then the following
 inequality holds :

 [ s ] b  ( y  w * ,  [ n  1  1])  >  [ s ] b  ( y  w ,  [ n  1  1]) .

 P ROOF OF  C LAIM  7 . 7 .  We will write  y  5  y  w  and  z  5  y  w * .  It is easy to see that

 S b a (  y )  5  S b a ( y  )  <  ( S b a ( w )  1  u y  u ) ,

 S b a ( z )  5  S b a ( y  )  <  ( S a b ( w )  1  u y  u ) ,

 where the ‘  1  u y  u ’ indicates translation of the given set of integers by  u y  u   units .  Hence we
 may derive the following expression for the linear term of  s  in  b  (  y ,  [ n  1  1]) ,  where  χ   is



 The  r - cubical lattice and the  cd - index  723

 the characteristic function .

 [ s ] b  (  y ,  [ n  1  1])  5  b  (  y  ( n ) ,  [ n ])  ?  χ  (  y ((1))  5  b )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a (  y )

 P ( I )  ?  b  (  y  ( u J u ) ,  J )  ?  b B (  y (( u I u 2 1)) )

 5  b  ( y  w ( k ) ,  [ n ])  ?  χ  ( w  ((1))  5  b )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a ( y  )

 P ( I )  ?  b  ( y  ( u J u ) ,  J )  ?  b B ( y  (( u I u 2 k 2 2)) w )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a ( w ) 1 n 2 k

 P ( I )  ?  b  ( y  w  ( u J u 2 n 1 k ) ,  J )  ?  b B ( w  (( u I u 2 1)) ) .

 Apply Lemma 7 . 3 to each term in the last sum .

 [ s ] b  (  y ,  [ n  1  1])  5  b  ( y  w  ( k ) ,  [ n ])  ?  χ  ( w  ((1))  5  b )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a ( y  )

 P ( I )  ?  b  ( y  ( u J u ) ,  J )  ?  b B ( y  (( u I u 2 k 2 2)) w )

 1  O
 j P S b a ( w )

 b  ( y  w (  j )  a  w  (( k 2 j 2 1)) ,  [ n ])  1  b  ( y  w  (  j )  b  w (( k 2 j 2 1)) ,  [ n ]) .

 Similarly ,  the linear term of  s  in  b  ( z ,  [ n  1  1]) is given by

 [ s ] b  ( z ,  [ n  1  1])  5  b  ( y  w  ( k )* ,  [ n ])  ?  χ  ( w  ((1))  5  a )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a ( y  )

 P ( I )  ?  b  ( y  ( u J u ) ,  J )  ?  b B ( y  (( u I u 2 k 2 2)) w *)

 1  O
 j P S a b ( w )

 b  ( y  w (  j )*  a  w  (( k 2 j 2 1))* ,  [ n ])  1  b  ( y  w  (  j )*  b  w (( k 2 j 2 1))* ,  [ n ]) .  (5)

 We apply the induction hypothesis to the first term of equation (5) .  For its second term
 we use the fact that the  ab -index of the boolean algebra has the increasing alternating
 property .  Since 0  ̧  S a b ( w ) ,  we may also apply the induction hypothesis to the third
 term .  Hence we have

 [ s ] b  ( z ,  [ n  1  1])  <  b  ( y  w  ( k ) ,  [ n ])  ?  χ  ( w  ((1))  5  a )

 1  O
 I 1 J 5 [ n ]

 u J u P S b a ( y  )

 P ( I )  ?  b  ( y  ( u J u ) ,  J )  ?  b B ( y  (( u I u 2 k 2 2)) w )

 1  O
 j P S a b ( w )

 b  ( y  w (  j )  b  w  (( k 2 j 2 1)) ,  [ n ])  1  b  ( y  w  (  j )  a  w (( k 2 j 2 1)) ,  [ n ]) .

 Thus the desired inequality [ s ] b  (  y ,  [ n  1  1])  >  [ s ] b  ( z ,  [ n  1  1]) will follow if we can
 prove that

 0  <  b  ( y  w ( k ) ,  [ n ])  ?  χ  ( w  ((1))  5  b )

 1  O
 j P S b a ( w )

 b  ( y  w (  j )  a  w  (( k 2 j 2 1)) ,  [ n ])  1  b  ( y  w  (  j )  b  w (( k 2 j 2 1)) ,  [ n ])

 2  b  ( y  w ( k ) ,  [ n ])  ?  χ  ( w  ((1))  5  a )

 2  O
 j P S a b ( w )

 b  ( y  w (  j )  b  w  (( k 2 j 2 1)) ,  [ n ])  1  b  ( y  w  (  j )  a  w (( k 2 j 2 1)) ,  [ n ]) .

 However ,  the right-hand side of this inequality is equal to  b  ( y  w (( k )) ,  [ n ]) by applying
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 Lemma 7 . 4 with  f  ( u )  5  b  ( y  u ,  [ n ]) .  Since  b  ( y  w (( k )) ,  [ n ]) is non-negative ,  the proof of
 this claim is complete .  j

 The proof of the second claim is quite similar to the proof of Claim 7 . 7 ,  and hence
 omitted .  Thus the proof of the theorem is complete .  h

 As at the end of Section 6 ,  it is interesting to determine the generating function and
 an asymptotic expression for the number of augmented  r -signed permutations having
 ab -word  bab  ?  ?  ?  .  (Recall that this is the case when  r  5  ( r ,  .  .  .  ,  r ) . ) Let  h n  5
 b  ( bab  ?  ?  ? ,  [ n ]) .  This calculation has been done in [7] ,  so we simply quote the two
 results .  The exponential generating function and the asymptotics are given by

 O
 n > 0

 h n  ?
 x n

 n !
 5

 sin(( r  2  1) x )  1  cos( x )
 cos( rx )

 and  h n  ,
 4
 π

 ?  cos S  π
 2 r
 D  ?  S 2 r

 π  D
 n

 ?  n ! .

 8 .  C ONCLUDING  R EMARKS

 There are many related problems to study .  For instance ,  are there other posets which
 have an  r - cd -index? More generally ,  are there other extensions of the  cd -index? An
 example of a poset  P  having an  r - cd -index is as follows .  Let  T r   be the poset on the set
 !

 n
 i 5 0  [ r ] i  ,  where the  i  indicates Cartesian power .  The cover relation in  T r   is given by

 ( a 1  ,  .  .  .  ,  a i 2 1  ,  a i )  a  ( a 1  ,  .  .  .  ,  a i 2 1 ) .  The poset  P  defined by

 P  5  h ( x ,  y ) :  x  P  B n  , y  P  T r  ,  r  ( x )  5  r  (  y ) j  <  h 0 ̂  j ,

 has an  r - cd -index .  In fact ,  the poset  P  will have the same  ab -index as  C r
 n .

 Pak and Postnikov [16] have found a multivariable generalization of Andre ́
 polynomials using a branching rule on  k -ary (rather than binary) trees .  Work of Pak
 [15] contains a dif ferent multivariable generalization which reduces to a recurrence for
 the Andre ́   polynomial of the subspace lattice .  His recurrence can be thought of as a
 q -analogue of the  cd -index of the boolean algebra .  It would be interesting to see if one
 could develop a  cd -theory for  q -analogues of posets .  Billera and Liu [4] (also see [11])
 have developed a general algebraic setting to view the  cd -index .  Is there a  q -analogue
 of their theory?

 What other classes of posets will have their  ab -index satisfying the strictly increasing
 alternating property? A poset that seems to fulfill a similar condition is the partition
 lattice  P n .  Our data suggests that the  ab -word with the largest coef ficient in  Õ  ( P n ) is
 the word  bab  ?  ?  ?  b

 n 2 3

 .  Is there a ‘meta-theorem’ which explains why alternating rank
 CDE

 selections maximize the beta invariant?
 Stanley proved that the  cd -index of the face lattice of a convex polytope has

 non-negative coef ficients [23 ,  Corollary 2 . 2] .  (For a more general statement ,  see [23 ,
 Theorem 2 . 2] . ) From this he observed that the beta invariant will reach its maximum
 value ,  for arbitrary rank selections ,  by taking alternating rank selections .  However ,
 uniqueness of this result (i . e .,  that the two alternating rank selections are the only
 extremal configurations) does not follow from his observation .  By Lemma 2 . 2 it would
 be enough to show that the  cd -index of the face lattice of a convex polytope has
 positive coef ficients .  Stanley has conjectured that among all Gorenstein* lattices of
 rank  n ,  the boolean algebra  B n   minimizes all the coef ficients of the  cd -index [24 ,
 Conjecture 2 . 7] .  This conjecture implies that the  cd -index of the face lattice of a convex
 polytope has positive coef ficients .

 The exponential generating function  4
 r  1 / (1  2  rx ) enumerates  r -multipermutations ,

 see [17] .  Notice that both this generating function and the one for the number of
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 augmented Andre ́    r -signed permutations are of the form  4
 r  f  ( rx ) ,  where  f  ( x ) is an

 exponential generating function .  Is there a theory which explains generating functions
 of this form?
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