MA 114 - Calculus II
PRACTICE
Spring 2004
THIRD MIDTERM
04/13/2004
Name: \qquad Sec.: \qquad

SEC.	INSTRUCTORS	T.A.'S	LECTURES	RECITATIONS
001	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 8:00-9:15, CB 347
002	A. Corso	D. Watson	MWF 8:00-8:50, CP 222	TR 12:30-1:45, CP 155
003	A. Corso	S. Petrovic	MWF 8:00-8:50, CP 222	TR 3:30-4:45, CB 347

Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes may be used. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. When answering these questions, please be sure to:

- check answers when possible,
- clearly indicate your answer and the reasoning used to arrive at that answer (unsupported answers may receive NO credit).

QUESTION	SCORE	TOTAL
$\mathbf{1 .}$		15
$\mathbf{2 .}$		15
$\mathbf{3 .}$		15
$\mathbf{4 .}$		15
$\mathbf{5 .}$		10
$\mathbf{6 .}$		10
$\mathbf{7 .}$		15
$\mathbf{8 .}$		10
Bonus.		110
TOTAL		

1. (5 pts each) Find the limits of the following sequences
(a) $a_{n}=(-1)^{n} \frac{\sin n}{n}$;
(b) $a_{n}=\ln (2 n)-\ln (3 n+1)$;
(c) $a_{n}=\frac{1}{n} \int_{1}^{n} \frac{1}{x} d x$.
2. (5 pts each) Determine if the following series converge. If they do, find their sum:
(a) $\sum_{n=2}^{\infty} \frac{\ln n}{n}$;
(b) $\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{5^{n}}$;
(c) $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$.
3. (5 pts each) Determine whether the following series converge or diverge. Give reasons for your answers.
(a) $\sum_{n=1}^{\infty} \frac{n}{n+1}$;
(b) $\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}$;
(c) $\sum_{n=1}^{\infty} 1+(-1)^{n}$.
4. Determine whether the following series converge absolutely, converge conditionally, or diverge. Give reasons for your answers.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$;
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$.
5. Determine whether the following series converges or not:

$$
\sum_{n=1}^{\infty} \frac{1}{n\left(1+\ln ^{2} n\right)}
$$

Will it be of any help if you know the behaviour of the improper integral

$$
\int_{1}^{\infty} \frac{d x}{x\left(1+\ln ^{2} x\right)} ?
$$

Explain....and compute.

pts: /10

6. Determine whether the following statements are true (\mathbf{T}) or false (\mathbf{F}). Check the appropriate box.

T $\quad \mathbf{F}$If $\lim _{n \longrightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is certainly convergent.If $\lim _{n \longrightarrow \infty} a_{n}=1 / 2$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.The series $\sum_{n=1}^{\infty} 3^{n}$ is convergent.\square The series $\sum_{n=1}^{\infty} 3^{-n}$ is divergent.\square If a series converges then it converges absolutely.
7. (a) (5 pts) Find the interval of convergence of the following power series

$$
\sum_{n=1}^{\infty} \sqrt[n]{n}(x-5)^{n}
$$

(b) (10 pts) Find the series' interval of convergence and, within this interval, the sum $f(x)$ of the series

$$
\sum_{n=1}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}=
$$

8. Find a power series representation for the function $f(x)=\ln (1+x)$ and determine the radius of convergence.

Bonus. Use series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}=
$$

