MA 114 Worksheet # 17: Integration by trig substitution

- 1. Conceptual Understanding:
 - (a) Given the identity $\sin^2 \theta + \cos^2 \theta = 1$, prove that:

$$\sec^2\theta = \tan^2\theta + 1.$$

- (b) Given $x = a\sin(\theta)$ with a > 0 and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, show that $\sqrt{a^2 x^2} = a\cos\theta$.
- (c) Given $x = a \tan(\theta)$ with a > 0 and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, show that $\sqrt{a^2 + x^2} = a \sec \theta$.
- (d) Given $x = a \sec(\theta)$ with a > 0 and $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$, show that $\sqrt{x^2 a^2} = a \tan \theta$.
- 2. Compute the following integrals:

(a)
$$\int_{0}^{2} \frac{u^{3}}{\sqrt{16 - u^{2}}} du$$

(b)
$$\int \frac{1}{x^{2}\sqrt{25 - x^{2}}} dx$$

(c)
$$\int \frac{x^{3}}{\sqrt{64 + x^{2}}} dx$$

(d)
$$\int_{0}^{1} \sqrt{x^{2} + 1} dx$$

(e)
$$\int \frac{x}{\sqrt{x^{2} + 1}} dx$$

3. Let a, b > 0. Prove that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .

4. Let r > 0. Consider the identity

$$\int_0^s \sqrt{r^2 - x^2} \, dx = \frac{1}{2}r^2 \arcsin\left(\frac{s}{r}\right) + \frac{1}{2}s\sqrt{r^2 - s^2}$$

where $0 \leq s \leq r$.

- (a) Plot the curves $y = \sqrt{r^2 x^2}$, x = s, and $y = \frac{x}{s}\sqrt{r^2 s^2}$.
- (b) Using part (a), verify the identity geometrically.
- (c) Verify the identity using trigonometric substitution.