MA 114 Worksheet \# 20: Arc Length and Surface Area

1. Conceptual Understanding:
(a) Write down the formula for the arc length of a function $f(x)$ over the interval $[a, b]$ including the required conditions on $f(x)$.
(b) Write down the formula for the (surface) area of the surface obtained by rotating the graph of $f(x)$ about the x-axis for $a \leq x \leq b$. How would this formula change if the graph were instead rotated about $y=c$?
2. Find an integral expression for the arc length of the following curves. Do not evaluate the integrals.
(a) $f(x)=\sin (x)$ from $x=0$ to $x=2$.
(b) $f(x)=x^{4}$ from $x=2$ to $x=6$.
(c) $x^{2}+y^{2}=1$
3. Find the arc length of the following curves.
(a) $f(x)=x^{3 / 2}$ from $x=0$ to $x=2$.
(b) $f(x)=\ln (\cos (x))$ from $x=0$ to $x=\pi / 3$.
4. Set up a function $s(t)$ that gives the arc length of the curve $f(x)=2 x+1$ from $x=0$ to $x=t$. Find $s(4)$.
5. Calculate the arc length of $f(x)=x^{2}$ over $[0,1]$. [Hint: You will need to use a trigonometric substitution.]
6. Calculate the arc length of the graph of $f(x)=m x+r$ over $[a, b]$ in two ways: using the Pythagorean Theorem and using the arc length integral. [Hint: Make the arc of $f(x)=m x+r$ from $[a, b]$ the hypotenuse of a right triangle with legs $(b-a)$ and $m(b-a)$.]
7. Use Simpson's Rule with $n=6$ to approximate the arc length of $f(x)=\sin (x)$ over $[0, \pi]$.

For Problems 8-10, compute the surface area for a revolution about the x-axis over the given interval.
8. $y=x,[0,4]$
9. $y=x^{3},[0,2]$
10. $y=\left(4-x^{2 / 3}\right)^{3 / 2},[0,8]$

