MA 114 Worksheet # 20: Arc Length and Surface Area

- 1. Conceptual Understanding:
 - (a) Write down the formula for the arc length of a function f(x) over the interval [a, b] including the required conditions on f(x).
 - (b) Write down the formula for the (surface) area of the surface obtained by rotating the graph of f(x) about the x-axis for $a \le x \le b$. How would this formula change if the graph were instead rotated about y = c?
- 2. Find an integral expression for the arc length of the following curves. Do **not** evaluate the integrals.
 - (a) $f(x) = \sin(x)$ from x = 0 to x = 2.
 - (b) $f(x) = x^4$ from x = 2 to x = 6.
 - (c) $x^2 + y^2 = 1$
- 3. Find the arc length of the following curves.
 - (a) $f(x) = x^{3/2}$ from x = 0 to x = 2.
 - (b) $f(x) = \ln(\cos(x))$ from x = 0 to $x = \pi/3$.
- 4. Set up a function s(t) that gives the arc length of the curve f(x) = 2x + 1 from x = 0 to x = t. Find s(4).
- 5. Calculate the arc length of $f(x) = x^2$ over [0, 1]. [Hint: You will need to use a trigonometric substitution.]
- 6. Calculate the arc length of the graph of f(x) = mx + r over [a, b] in two ways: using the Pythagorean Theorem and using the arc length integral. [Hint: Make the arc of f(x) = mx + r from [a, b] the hypotenuse of a right triangle with legs (b a) and m(b a).]
- 7. Use Simpson's Rule with n = 6 to approximate the arc length of $f(x) = \sin(x)$ over $[0, \pi]$.

For Problems 8-10, compute the surface area for a revolution about the x-axis over the given interval.

8.
$$y = x$$
, $[0, 4]$

9.
$$y = x^3$$
, $[0, 2]$

10. $y = (4 - x^{2/3})^{3/2}, [0, 8]$