MA 114 Worksheet # 21: Center of Mass

- 1. Conceptual Understanding:
 - (a) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between x = a, x = b, f(x), and g(x) as in the figure to the right.
 - (b) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between y = c, y = d, f(y), and g(y) as in the figure to the right.

- 2. Find the center of mass for the system of particles of masses 4, 2, 5, and 1 located at the coordinates (1, 2), (-3, 2), (2, -1), and (4, 0).
- 3. Point masses of equal size are placed at the vertices of the triangle with coordinates (3, 0), (b, 0), and (0, 6), where b > 3. Find the center of mass.
- 4. Find the centroid of the region under the graph of $y = 1 x^2$ for $0 \le x \le 1$. For practice, do this using both the approach from 1(a) and the approach from 1(b).
- 5. Find the centroid of the region under the graph of $f(x) = \sqrt{x}$ for $1 \le x \le 4$.
- 6. Find the centroid of the region between $f(x) = x^{-1}$ and g(x) = 2 x for $1 \le x \le 2$.
- 7. Let $m > n \ge 0$. Find the centroid of the region between x^m and x^n for $0 \le x \le 1$. Find values for m and n that force the centroid to lie outside of the region.