MA 114 Worksheet \# 21: Center of Mass

1. Conceptual Understanding:
(a) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between $x=a, x=b, f(x)$, and $g(x)$ as in the figure to the right.

(b) Write down the formulas for the coordinates of the centroid of a plate with constant density bounded between $y=c, y=d, f(y)$, and $g(y)$ as in the figure to the right.

2. Find the center of mass for the system of particles of masses $4,2,5$, and 1 located at the coordinates $(1,2),(-3,2),(2,-1)$, and $(4,0)$.
3. Point masses of equal size are placed at the vertices of the triangle with coordinates $(3,0),(b, 0)$, and $(0,6)$, where $b>3$. Find the center of mass.
4. Find the centroid of the region under the graph of $y=1-x^{2}$ for $0 \leq x \leq 1$. For practice, do this using both the approach from 1 (a) and the approach from $1(\mathrm{~b})$.
5. Find the centroid of the region under the graph of $f(x)=\sqrt{x}$ for $1 \leq x \leq 4$.
6. Find the centroid of the region between $f(x)=x^{-1}$ and $g(x)=2-x$ for $1 \leq x \leq 2$.
7. Let $m>n \geq 0$. Find the centroid of the region between x^{m} and x^{n} for $0 \leq x \leq 1$. Find values for m and n that force the centroid to lie outside of the region.
