MA 114 Worksheet \# 26: First-Order Linear Equations and Parametric Equations

1. Solve the second-order equation $x y^{\prime \prime}+2 y^{\prime}=12 x^{2}$ by making the substitution $u=y^{\prime}$.
2. Consider a series circuit consisting of a resistor of R ohms, an inductor of L henries and a variable voltage source of $V(t)$ volts (time t in seconds). The current through the circuit $I(t)$ (in amperes) satisfies the differential equation

$$
\frac{d I}{d t}+\frac{R}{L} I=\frac{1}{L} V(t)
$$

Assume that $R=110 \Omega, L=10 \mathrm{H}$, and $V(t)=e^{-t}$ volts.
(a) Solve the equation with initial condition $I(0)=0$,
(b) Calculate t_{m} and $I\left(t_{m}\right)$, where t_{m} is the time at which $I(t)$ has a maximum value.
3. A tank with a capacity of 400 liters is full of a mixture of water and chlorine with a concentration of 0.05 grams of chlorine per liter. In order to reduce the concentration of chlorine, fresh water is pumped into the tank at a rate of 4 liters per second. The mixture is kept stirred and is pumped out at a rate of 10 liters per second. Find the amount of chlorine in the tank as a function of time.
4. Conceptual Understanding:
(a) How is a curve different from a parametrization of the curve?
(b) Suppose a curve is parametrized by $(x(t), y(t))$ and that there is a time t_{0} with $x^{\prime}\left(t_{0}\right)=0$, $x^{\prime \prime}\left(t_{0}\right)>0$, and $y^{\prime}\left(t_{0}\right)>0$. What can you say about the curve near $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) ?$
5. Consider the curve parametrized by $c(t)=\left(\sin (t)+\frac{t}{\pi},\left(\frac{t}{\pi}\right)^{2}\right)$, for $0 \leq t \leq 2 \pi$.
(a) Plot the points given by $t=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}, 2 \pi$.
(b) Consider the derivatives of $x(t)$ and $y(t)$ when $t=\frac{\pi}{2}$ and $t=\frac{3 \pi}{2}$. What does this tell you about the curve near these points?
(c) Use the above information to plot the curve.
6. Find a Cartesian equation for the following parametric curves. Sketch the curves to see if you solved them correctly.
(a) $x=\sqrt{t}, y=1-t$.
(b) $x=3 t-5, y=2 t+1$.
(c) $x=\cos (t), y=\sin (t)$.
7. Represent each of the following curves as parametric equations traced just once on the indicated interval.
(a) $y=x^{3}$ from $x=0$ to $x=2$.
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
8. A particle travels from the point $(2,3)$ to $(-1,-1)$ along a straight line over the course of 5 seconds. Write down a set of parametric equations which describe the position of the particle for any time between 0 and 5 seconds.

