Worksheet \# 10: Product and Quotient Rules

1. Show by way of example that, in general,

$$
\frac{d(f \cdot g)}{d x} \neq \frac{d f}{d x} \cdot \frac{d g}{d x}
$$

and

$$
\frac{d\left(\frac{f}{g}\right)}{d x} \neq \frac{\frac{d f}{d x}}{\frac{d g}{d x}}
$$

2. State the quotient and product rule and be sure to include all necessary hypotheses.
3. Compute the first derivative of each of the following:
(a) $f(x)=\frac{\sqrt{x}}{x-1}$
(b) $f(x)=\left(3 x^{2}+x\right) e^{x}$
(c) $f(x)=\frac{e^{x}}{2 x^{3}}$
(d) $f(x)=\left(x^{3}+2 x+e^{x}\right)\left(\frac{x-1}{\sqrt{x}}\right)$
(e) $f(x)=\frac{2 x}{4+x^{2}}$
(f) $f(x)=\frac{a x+b}{c x+d}$
(g) $f(x)=\frac{\left(x^{2}+1\right)\left(x^{3}+2\right)}{x^{5}}$
4. Calculate the first three derivatives of $f(x)=x e^{x}$ and use these to guess a general formula for $f^{(n)}(x)$, the n-th derivative of f.
5. Find an equation of the tangent line to the given curve at the specified point.
(a) $y=x^{2}+\frac{e^{x}}{x^{2}+1}$ at the point $x=3$
(b) $y=2 x e^{x}, x=0$
6. Suppose that $f(2)=3, g(2)=2, f^{\prime}(2)=-2$, and $g^{\prime}(2)=4$. For the following functions, find $h^{\prime}(2)$.
(a) $h(x)=5 f(x)+2 g(x)$
(b) $h(x)=f(x) g(x)$
(c) $h(x)=\frac{f(x)}{g(x)}$
(d) $h(x)=\frac{g(x)}{1+f(x)}$
