Worksheet \# 11: Trigonometric Functions

1. Convert the angle $\pi / 12$ to degrees and the angle 900° to radians.
2. Find the exact values of the following expressions. Do not use a calculator.
(a) $\arctan (1)$
(b) $\tan (\arctan (10))$
(c) $\arcsin (\sin (7 \pi / 3))$
3. Find all solutions to the following equations in the interval $[0,2 \pi]$. You will need to use some trigonometric identities.
(a) $\sqrt{3} \cos x+2 \tan x \cos ^{2} x=0$
(b) $3 \cot ^{2}(x)=1$
(c) $2 \cos x+\sin 2 x=0$
4. If $\sin (x)=\frac{2}{5}$ and $\sec (x)=\frac{-5}{3}$, find $\csc (x), \cot (x), \cos (x), \tan (x), \sin (2 x)$.
5. Find the length of the circular arc subtended by an angle of $\pi / 12 \mathrm{rad}$ if the radius of the circle is 36 cm .
6. A clock lies in the coordinate plane so that its center is at the origin. The hour hand is 5 cm long and the minute hand is 15 cm long. Find the coordinates of the tips of each hand at $3: 50 \mathrm{pm}$.
7. Differentiate each of the following functions:
(a) $f(t)=\cos (t)$
(b) $g(u)=\frac{1}{\cos (u)}$
(c) $r(\theta)=\theta^{3} \sin (\theta)$
(d) $s(t)=\tan (t)+\csc (t)$
(e) $h(x)=\sin (x) \csc (x)$
(f) $f(x)=x^{2} \sin ^{2}(x)$
8. A particle's distance from the origin (in meters) along the x-axis is modeled by $p(t)=2 \sin (t)-$ $\cos (t)$, where t is measured in seconds.
(a) Determine the particle's speed (speed $=\mid$ velocity \mid) at π seconds.
(b) Is the particle moving towards or away from the origin at π seconds. Explain.
(c) Now, find the velocity of the particle at time $t=3 \pi / 2$. Is the particle moving towards the origin or away from the origin?
