Worksheet \# 12: Chain Rule

1. (MA 113 Exam II, problem 9, Spring 2009).
(a) Carefully state the chain rule. Use complete sentences.
(b) Suppose f and g are differentiable functions so that $f(2)=3, f^{\prime}(2)=-1, g(2)=1 / 4$, and $g^{\prime}(2)=2$. Find each of the following:
i. $h^{\prime}(2)$ where $h(x)=\sqrt{[f(x)]^{2}+7}$.
ii. $l^{\prime}(2)$ where $l(x)=f\left(x^{3} \cdot g(x)\right)$.
2. Differentiate each of the following and simplify your answer.
(a) $f(x)=\sqrt[3]{2 x^{3}+7 x+3}$
(b) $g(t)=\tan (\sin t)$
(c) $h(u)=\sec ^{2} u+\tan ^{2} u$
(d) $f(x)=e^{\left(3 x^{2}+x\right)}$
(e) $g(x)=\sin (\sin (\sin x))$
3. Find an equation of the tangent line to the curve at the given point.
(a) $f(x)=x^{2} e^{3 x}, x=2$
(b) $f(x)=\sin x+\sin ^{2} x, x=0$
4. If $h(x)=\sqrt{4+3 f(x)}$ where $f(1)=7$ and $f^{\prime}(1)=4$, find $h^{\prime}(1)$.
5. Let $h(x)=f \circ g(x)$ and $k(x)=g \circ f(x)$ where some values of f and g are given by the table

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x})$	$\mathrm{g}^{\prime}(\mathrm{x})$
-1	4	4	-1	-1
2	3	4	3	-1
3	-1	-1	3	-1
4	3	2	2	-1

Find: $h^{\prime}(-1), h^{\prime}(3)$ and $k^{\prime}(2)$.
6. Find all x values so that $f(x)=2 \sin x+\sin ^{2} x$ has a horizontal tangent at x.
7. Comprehension check for derivatives of trigonometric functions.
(a) True or false? If $f^{\prime}(x)=-\sin (\theta)$ then $f(\theta)=\cos (\theta)$.
(b) True or False? If θ is one of the non-right angles in a right triangle and $\sin (\theta)=\frac{2}{3}$ then the hypotenuse of the triangle must have length 3 .
(c) Let $f(\theta)=\sin (\theta)$. Find $f^{(435)}(\theta)$.
(d) Differentiate both sides of the identity

$$
\tan x=\frac{\sin x}{\cos x}
$$

to obtain a new trigonometric identity.

