Worksheet \# 13: Implicit Differentiation

1. Find $d y / d x$ by implicit differentiation.
(a) $x^{3}+y^{3}=1$
(b) $e^{y} \cos x=1+\sin (x y)$
(c) $y^{2}(2-x)=x^{3}$
2. Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
(a) $x^{2}+y^{2}=x+y-x^{3},(0,1)$
(b) $y^{2}\left(y^{2}-4\right)=x^{2}\left(x^{2}-5\right),(0,-2)$
3. Find the derivative of each of the following.
(a) $f(x)=\arctan \sqrt{x}$
(b) $g(x)=\arcsin x^{2}$
(c) $h(x)=\arccos \left(e^{2 x}\right)$
(d) $f(x)=\ln \left(x^{2}+2\right)$
(e) $f(x)=\ln \left(e^{2 x}+5 e^{x}+3\right)$
(f) $f(x)=\ln (\cos (x))$
4. The equation $x^{2}-x y+y^{2}=3$ represents a "rotated" ellipse, that is, an ellipse whose axes are not parallel to the coordinate axes. Find the points where this ellipse crosses the x-axis and show that the tangents at these points are parallel.
5. Prove:

$$
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}
$$

[Hint: Use the same technique from the proof for the derivative formula for $\sin ^{-1}(x)$. Start by writing $y=\cos ^{-1}(x)$ and obtain an expression which can be differentiated implicitly.]

