Worksheet \# 18: The Mean Value Theorem

1. State the mean value theorem and illustrate the theorem in a sketch.
2. (MA 113 Exam III, Problem 8(c), Spring 2009). Suppose that g is differentiable for all x and that $-5 \leq g^{\prime}(x) \leq 2$ for all x. Assume also that $g(0)=2$. Based on this information, is it possible that $g(2)=8$?
3. Section 4.2 in the text contains the following important corollary which you should commit to memory:

Corollary 7, p. 284: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b) then $f(x)=g(x)+c$ for some constant c.

Use this result to answer the following questions:
(a) If $f^{\prime}(x)=\sin (x)$ and $f(0)=15$ what is $f(x)$?
(b) If $f^{\prime}(x)=\sqrt{x}$ and $f(4)=5$ what is $f(x)$?
(c) If $f^{\prime}(x)=k$ where k is a constant, show that $f(x)=k x+d$ for some other constant d.
4. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
(a) $f(x)=e^{-2 x},[0,3]$
(b) $f(x)=\frac{x}{x+2},[1,4]$
5. A trucker handed in a ticket at a toll booth showing that in 2 hours she had covered 159 miles on a toll road with speed limit 65 mph . The trucker was cited for speeding. Why?
6. If $f(1)=10$ and $f^{\prime}(x) \geq 2$ for $1 \leq x \leq 4$, how small can $f(4)$ possibly be?
7. For what values of a, m, and b does the function

$$
f(x)= \begin{cases}3 & \text { if } x=0 \\ -x^{2}+3 x+a & \text { if } 0<x<1 \\ m x+b & \text { if } 1 \leq x \leq 2\end{cases}
$$

satisfy the hypotheses of the Mean Value Theorem on the interval [0,2]?
8. Determine whether the following statements are true or false. If the statement is false, provide a counterexample.
(a) If f is differentiable on the open interval $(a, b), f(a)=1$, and $f(b)=1$, then $f^{\prime}(c)=0$ for some c in (a, b).
(b) If f is differentiable on the open interval (a, b), continuous on the closed interval $[a, b]$, and $f^{\prime}(x) \neq 0$ for all x in (a, b), then we have $f(a) \neq f(b)$.
(c) Suppose f is a continuous function on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$, then $f^{\prime}\left(\frac{a+b}{2}\right)=0$.
(d) If f is differentiable everywhere and $f(-1)=f(1)$, then there is a number c such that $|c|<1$ and $f^{\prime}(c)=0$.

