Worksheet # 2: Functions and Inverse Functions; Logarithms

- 1. (MA 113 Exam I, Problem 2, Spring 2009). Consider the function $f(x) = \frac{4x+1}{3x-2}$. Determine the inverse function of f.
- 2. Let $f(x) = x^3 + 1$ and $g(x) = \sqrt{x}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ and specify their domains.
- 3. Suppose the graph of f(x) is given. Write an equation for the graph obtained by first shifting the graph of f(x) up 3 units and left by 2 units, and then compressing the resulting graph horizontally by a factor of 10.
- 4. Suppose the graph of g(x) is given by the equation g(x) = f(2x 5) + 7. In terms of standard transformations describe how to obtain g(x) from the graph of f(x).
- 5. Find the domain and range of the following functions.
 - (a) f(x) = 15(b) $f(x) = \sqrt{x^2 + 2x + 1}$ (c) $f(x) = \sqrt{x^2 - 2x - 3}$ (d) $f(x) = \frac{x}{|x|}$
- 6. Profit is the difference between total revenues and total costs. Suppose that Company W produces good Y. Let x denote the quantity of good Y sold. Suppose

$$R(x) = 15x$$

and

$$C(x) = \frac{1}{10}x^2 + x + 30$$

are the company's revenue and cost functions respectively for sales of this good.

- (a) Find the company's profit function P(x).
- (b) Company W would really like to know how much of good Y they must sell to break even. Find the quantity x of good Y that the company must sell to make neither a profit nor a loss.
- 7. Compute each of the following logarithms exactly. Do not use a calculator.
 - (a) $\log_{10}\sqrt{10^3}$
 - (b) $\log_3(1/27)$
 - (c) $\log_2 6 \log_2 15 + \log_2 20$
 - (d) $\log_{10}(\log_{10}(\log_{10}(10^{10^{100}})))$
- 8. Express each of the following as a single logarithm.
 - (a) $\log_{10}(5) \log_{10}(3) + \log_{10}(2)$
 - (b) $\log_3(a+b) 15\log_3(c) + 17\log_3(d)$
- 9. Solve the following equations for x
 - (a) $10^{2x+1} 7 = 0$
 - (b) $\log_2(x) + \log_2(x-1) = 1$
 - (c) $3^{ax} = C \cdot 3^{bx}, a \neq b.$
- 10. True or false?
 - (a) Every function has an inverse.
 - (b) Every function will pass the vertical line test.
 - (c) Every function will pass the horizontal line test.
 - (d) $f \circ g(x) = g \circ f(x)$.
 - (e) There is a function whose graph is an oval.
 - (f) No function can be both even and odd.