Worksheet \# 2: Functions and Inverse Functions; Logarithms

1. (MA 113 Exam I, Problem 2, Spring 2009). Consider the function $f(x)=\frac{4 x+1}{3 x-2}$. Determine the inverse function of f.
2. Let $f(x)=x^{3}+1$ and $g(x)=\sqrt{x}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ and specify their domains.
3. Suppose the graph of $f(x)$ is given. Write an equation for the graph obtained by first shifting the graph of $f(x)$ up 3 units and left by 2 units, and then compressing the resulting graph horizontally by a factor of 10 .
4. Suppose the graph of $g(x)$ is given by the equation $g(x)=f(2 x-5)+7$. In terms of standard transformations describe how to obtain $g(x)$ from the graph of $f(x)$.
5. Find the domain and range of the following functions.
(a) $f(x)=15$
(b) $f(x)=\sqrt{x^{2}+2 x+1}$
(c) $f(x)=\sqrt{x^{2}-2 x-3}$
(d) $f(x)=\frac{x}{|x|}$
6. Profit is the difference between total revenues and total costs. Suppose that Company W produces good Y. Let x denote the quantity of good Y sold. Suppose

$$
R(x)=15 x
$$

and

$$
C(x)=\frac{1}{10} x^{2}+x+30
$$

are the company's revenue and cost functions respectively for sales of this good.
(a) Find the company's profit function $P(x)$.
(b) Company W would really like to know how much of good Y they must sell to break even. Find the quantity x of good Y that the company must sell to make neither a profit nor a loss.
7. Compute each of the following logarithms exactly. Do not use a calculator.
(a) $\log _{10} \sqrt{10^{3}}$
(b) $\log _{3}(1 / 27)$
(c) $\log _{2} 6-\log _{2} 15+\log _{2} 20$
(d) $\log _{10}\left(\log _{10}\left(\log _{10}\left(10^{10^{100}}\right)\right)\right)$
8. Express each of the following as a single logarithm.
(a) $\log _{10}(5)-\log _{10}(3)+\log _{10}(2)$
(b) $\log _{3}(a+b)-15 \log _{3}(c)+17 \log _{3}(d)$
9. Solve the following equations for x
(a) $10^{2 x+1}-7=0$
(b) $\log _{2}(x)+\log _{2}(x-1)=1$
(c) $3^{a x}=C \cdot 3^{b x}, a \neq b$.
10. True or false?
(a) Every function has an inverse.
(b) Every function will pass the vertical line test.
(c) Every function will pass the horizontal line test.
(d) $f \circ g(x)=g \circ f(x)$.
(e) There is a function whose graph is an oval.
(f) No function can be both even and odd.

