Worksheet # 22: Linear Approximation

- 1. For each of the following, use a linear approximation to estimate the actual value.
 - (a) $\tan(44^{\circ})$
 - (b) $(3.01)^3$
 - (c) $\sqrt{17}$
 - (d) $8.06^{2/3}$
- 2. Suppose we want to paint a sphere of radius 200 cm with a coat of paint .2 cm thick. Use a linearization to approximate the amount of paint we need to do the job.
- 3. (MA 113 Exam III, Problem 4, Spring 2009). Let $f(x) = \sqrt{16 + x}$. First, find the linear approximation to f(x) at x = 0. Then use the linear approximation to estimate $\sqrt{15.75}$. Present your solution as a rational number (fraction).
- 4. Your physics professor tells you that you can replace $\sin \theta$ with θ in equations when θ is close to zero. Explain why this is reasonable.
- 5. Suppose we measure the radius of a sphere as 10 cm with an accuracy of \pm .5 cm. Use a linear approximation to estimate the maximum error in (a) the computed surface area and (b) the computed volume.