Worksheet \# 22: Linear Approximation

1. For each of the following, use a linear approximation to estimate the actual value.
(a) $\tan \left(44^{\circ}\right)$
(b) $(3.01)^{3}$
(c) $\sqrt{17}$
(d) $8.06^{2 / 3}$
2. Suppose we want to paint a sphere of radius 200 cm with a coat of paint .2 cm thick. Use a linearization to approximate the amount of paint we need to do the job.
3. (MA 113 Exam III, Problem 4, Spring 2009). Let $f(x)=\sqrt{16+x}$. First, find the linear approximation to $f(x)$ at $x=0$. Then use the linear approximation to estimate $\sqrt{15.75}$. Present your solution as a rational number (fraction).
4. Your physics professor tells you that you can replace $\sin \theta$ with θ in equations when θ is close to zero. Explain why this is reasonable.
5. Suppose we measure the radius of a sphere as 10 cm with an accuracy of $\pm .5 \mathrm{~cm}$. Use a linear approximation to estimate the maximum error in (a) the computed surface area and (b) the computed volume.
