Worksheet # 23: Antiderivatives

- 1. Find the most general antiderivative for each of the following functions.
 - (a) x 3
 - (b) $\frac{1}{4}x^6 5x^3 + 9x$
 - (c) (x+1)(9x-8)
 - (d) $\sqrt{x} \frac{2}{\sqrt{x}}$
 - (e) $\frac{5}{x}$
 - (f) $\sqrt{x^5} 40$
 - (g) $\frac{x^3 8x^2 + 5}{x^2}$
 - (h) $\frac{5}{x^6}$
 - (i) $\frac{\sqrt{x}}{x^2} + \frac{3}{4}x^3$
 - (j) $\frac{2}{5}x^e$
 - $(k) \ \frac{1}{x-3}$
 - (1) $\sin(\theta) \sec^2(\theta)$
- 2. Find the values of the parameter A and B so that
 - (a) $F(x) = (Ax + B)e^x$ is an antiderivative of $f(x) = xe^x$.
 - (b) $H(x) = e^{2x}(A\cos x + B\sin x)$ is an antiderivative of $h(x) = e^{2x}\sin x$.
- 3. A particle moves along a straight line so that its velocity is given by $v(t) = t^2$. What is the net change in the particle's position between t = 1 and t = 3?
- 4. Suppose an object travels in a straight line with constant acceleration a, initial velocity v_0 , and initial displacement x_0 . Find a formula for the position function of the object.
- 5. A car brakes with constant deceleration of 5 m/s^2 produceing skid marks measuring 75 meters long before coming to a stop. How fast was the car traveling when the brakes were first applied?
- 6. True or false?
 - (a) The antiderivative of function is unique.
 - (b) If F is the antiderivative of f then f is differentiable.
 - (c) If F is the antiderivative of f then F + c where c is a constant is also an antiderivative.