Worksheet # 30: Review for Exam IV

1. Compute the derivative of the given function.

(a)
$$f(\theta) = \cos(2\theta^2 + \theta + 2)$$

(b) $g(u) = \ln(\sin^2 u)$
(c) $h(x) = \int_{-3599}^{x} t^2 - te^{t^2 + t + 1} dt$
(d) $r(y) = \arccos(y^3 + 1)$

2. Compute the following definite integrals.

(a)
$$\int_{-1}^{1} e^{u+1} du$$

(b)
$$\int_{-2}^{2} -\sqrt{4-x^{2}} dx$$

(c)
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

(d)
$$\int_{0}^{10} |x-5| dx$$

(e)
$$\int_{0}^{\pi} \sec^{2}(t/4) dt$$

(f)
$$\int_{0}^{1} x e^{-x^{2}} dx$$

3. Provide the most general antiderivative of the following functions.

(a)
$$x^4 + x^2 + x + 1000$$

(b) $(3x - 2)^{20}$
(c) $\frac{\sin(\ln(x))}{x}$

- 4. Use implicit differentiation to find $\frac{dy}{dx}$.
 - (a) $x^2 + xy + y^2 = 16$
 - (b) $x^2 + 2xy y^2 + x = 2$. Also, compute $\frac{dy}{dx}(1,2)$
- 5. If $F(x) = \int_{3x^2+1}^{7} \cos t \, dt$ find F'(x). Justify your work carefully.
- 6. Suppose a bacteria colony grows at a rate of $r(t) = 100 \ln(2)2^t$ with t in hours. By how many bacteria does the population increase from time t = 1 to t = 3?
- 7. Use a left Riemann sum with 4 equal subintervals to estimate the value of $\int_{1}^{5} x^{2} dx$. Will this estimate be larger or smaller than the actual value of definite integral? Explain.
- 8. A conical tank with radius 5 m and height 10 m is being filled with water at a rate of 3 m³ per minute. How fast is the water level increasing when the height is 3?
- 9. A rectangular storage container with an open top is to have a volume of 10 m³. The length of the container is twice its width. Material for the base costs \$ 10 per square meter while material for the sides costs \$ 6 per square meter. Find the materials cost for the cheapest possible container.
- 10. State the mean value theorem. Then if $3 \le f'(x) \le 5$ for all x, find the maximum possible value for f(8) f(2).