Worksheet \# 4: Introduction to Limits

1. Comprehension check.
(a) In words, describe what

$$
\lim _{x \rightarrow a} f(x)=L
$$

means.
(b) How can one-sided limits help you to determine if a limit exists?
(c) In words, what does

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

mean?
(d) Suppose $\lim _{x \rightarrow 1} f(x)=2$. Does $f(1)=2$?
(e) Suppose $f(1)=2$. What can be said about $\lim _{x \rightarrow 1} f(x)$?
2. Let

$$
f(x)= \begin{cases}x^{2}, & x \leq 0 \\ x-1, & 0<x, x \neq 2 \\ -3, & x=2\end{cases}
$$

(a) Sketch the graph of f.
(b) Compute the following.
i. $\lim _{x \rightarrow 0^{-}} f(x)$
ii. $\lim _{x \rightarrow 0^{+}} f(x)$
iii. $\lim _{x \rightarrow 0} f(x)$
iv. $f(0)$
v. $\lim _{x \rightarrow 2^{-}} f(x)$
vi. $\lim _{x \rightarrow 2^{+}} f(x)$
vii. $\lim _{x \rightarrow 2} f(x)$
viii. $f(2)$
3. In the following, sketch the functions and use the sketch to compute the limit.
(a) $\lim _{x \rightarrow 3} \pi$
(b) $\lim _{x \rightarrow \pi} x$
(c) $\lim _{x \rightarrow a}|x|$
(d) $\lim _{x \rightarrow 3} 2^{x}$
4. Compute the following limits or explain why they fail to exist:
(a) $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}$
(b) $\lim _{x \rightarrow-3^{-}} \frac{x+2}{x+3}$
(c) $\lim _{x \rightarrow-3} \frac{x+2}{x+3}$
(d) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}}$
5. (Problem 40, p. 99 in the text). In the theory of relativity, the mass of a particle with velocity v is:

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

where m_{0} is the mass of the particle at rest and c is the speed of light. What happens as $v \rightarrow c^{-}$?
6. Let

$$
f(x)=\left\{\begin{array}{c}
2 x+2, \quad x>-2 \\
a, \quad x=-2 \\
k x, \quad x<-2
\end{array} .\right.
$$

Find k and a so that $\lim _{x \rightarrow-2} f(x)=f(-2)$.

