Worksheet # 5: Limit Laws

- 1. Given $\lim_{x\to 2} f(x) = 5$ and $\lim_{x\to 2} g(x) = 2$, use limit laws (justify your work) to compute the following limits. Note when working through a limit problem that your answers should be a chain of equalities. Make sure to keep the $\lim_{x\to 2}$ operator until the very last step.
 - (a) $\lim_{x \to 2} 2f(x) g(x)$. (b) $\lim_{x \to 2} \frac{f(x)g(x)}{x}$. (c) $\lim_{x \to 2} f(x)^2 + x \cdot g(x)^2$.
 - (d) $\lim_{x \to 2} [f(x)]^{\frac{3}{2}}$.
- 2. Calculate the following limits if they exist or explain why the limit does not exist.
 - (a) $\lim_{x \to 1} \frac{x^2 1}{x 1}$ (b) $\lim_{x \to 1} \frac{x^2 - 1}{x - 2}$ (c) $\lim_{x \to 2^+} \frac{x^2 - 1}{x - 2}$ (d) $\lim_{x \to 9} \frac{x - 9}{\sqrt{x - 3}}$

3. Find the value of c such that $\lim_{x\to 2} \frac{x^2 + 3x + c}{x-2}$ exists. What is the limit?

- 4. Show that $\lim_{h\to 0} \frac{|h|}{h}$ does not exist by examining one-sided limits. Then sketch the graph of $\frac{|h|}{h}$ and check your reasoning.
- 5. True or false?
 - (a) The direct substitution property can always be used to compute limits.
 - (b) Let $f(x) = \frac{(x+2)(x-1)}{x-1}$ and g(x) = x+2. Then f(x) = g(x).

(c) Let
$$f(x) = \frac{(x+2)(x-1)}{x-1}$$
 and $g(x) = x+2$. Then $\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x)$.

- (d) If both the one-sided limits of f(x) exist as x approaches a, then $\lim_{x \to a} f(x)$ exists.
- (e) Let $p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$ be a polynomial with coefficients c_n, c_{n-1}, \dots, c_0 . Then $\lim_{x \to a} p(x) = c_n a^n + c_{n-1} a^{n-1} + \dots + c_1 a + c_0$.
- (f) If $\lim_{x \to a} f(x)$ exists then $\lim_{x \to a} f(x) = f(a)$.