Worksheet \# 7: Derivatives

1. Comprehension check.
(a) What does it mean for a function to be continuous at the point a ? What does it mean for a function be differentiable at the point a ?
(b) Are differentiable functions also continuous? Are continuous functions also differentiable?
(c) You have seen three ways in which a function can fail to be differentiable at a point. Sketch these three cases.
(d) The tangent line to the graph of $g(x)$ at $x=1$ is given by $y=5 x+1$. Find $g(1)$ and $g^{\prime}(1)$.
(e) Give the two formulas for the definition of the derivative of a function $f(x)$ at a point a.
(f) What does the derivative of $f(x)$ at $x=a$ describe?
2. A particle is traveling along the x-axis. Below is a graph of its position function $f(t)$ for the time interval $[0,5]$.

(a) Graph the particle's velocity function on the time interval $[0,5]$.
(b) Graph the particle's acceleration function on the time interval $[0,5]$.
(c) For what time intervals is the particle traveling left? Right? When is it at rest?
3. Find $f^{\prime}(a)$ using either formula of the definition for the derivative:
(a) $f(x)=3 x^{2}-2 x+1$
(b) $f(x)=\frac{1}{x+3}$
(c) $f(x)=\sqrt{x}$
4. Use 2(c) to find the tangent line to $f(x)=\sqrt{x}$ when $x=4$.
5. Let

$$
h(t)= \begin{cases}a t+b & t \leq 0 \\ t^{3}+1 & t>0\end{cases}
$$

Find a and b so that h is differentiable at $t=0$.

