MA641 Differential Geometry
 Spring 2014
 Problem Set 1
 January 24, 2014
 DUE: Wednesday, 29 January

1. Prove that the circle S^{1} is a differentiable manifold using the stereographic projection.
2. Complete the proof (sketched on page 3 of do Carmo) that a differentiable manifold is a topological space, that the sets $x_{\alpha}\left(U_{\alpha}\right)$ are open, and that the maps x_{α} are continuous.
3. Suppose that $\gamma: I \subset R \rightarrow R^{n}$ is a differentiable curve defined for the interval I, and that $f: U \subset R^{n} \rightarrow R$ is a C^{1}-function defined on an open set U containing $\gamma(I)$. Show that for any $t \in I$,

$$
\frac{d}{d t}(f \circ \gamma)(t)=(\nabla f)(\gamma(t)) \cdot \gamma^{\prime}(t)
$$

where ∇f is the gradient of f and $\gamma^{\prime}(t)$ is the tangent vector to the curve γ at t.
4. The sphere $S^{n-1} \subset R^{n}$ can be realized as the zero set of the function

$$
F\left(x, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}-1
$$

Suppose that $\gamma: I \subset R \rightarrow R^{n}$ is a differentiable curve defined for the interval I that obeys the equation

$$
F(\gamma(t))=0, \quad \forall t \in I
$$

Prove that

$$
\gamma(t) \cdot \gamma^{\prime}(t)=0, \quad \forall t \in I
$$

What does this condition mean geometrically?

