MA641 Differential Geometry Spring 2014
 Problem Set 4

 DUE: Friday, 28 March 2014

 DUE: Friday, 28 March 2014}
(1) do Carmo, page $56, \# 1$, on parallel transport.
(2) do Carmo, page 57, \#4, on parallel transport for regular surfaces.
(3) Prove that $S U(2)$ is simply connected and homeomorphic to the three sphere S^{3} using the map:

$$
x \in S^{3} \rightarrow x_{1} I_{2}+i\left(x_{2}, x_{3}, x_{4}\right) \cdot \bar{\sigma},
$$

where $\bar{\sigma}$ is the vector formed from the three Pauli matrices.
(4) Continuation of do Carmo, page 46, \#4: Prove that the mappings

$$
\alpha_{A}(z)=\frac{a z+b}{c z+d}
$$

for

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, R)
$$

are isometries of the left-invariant Riemannian metric constructed in the problem.

