MA671–001 Complex Analysis Spring 2020 Problem Set 5 DUE: 1 April 2020

- 1. Find the maximum of the modulus of $f(z) = e^{z^2}$ in the unit disk.
- 2. Let $f : \mathcal{A} \to C$ be analytic and suppose $f'(z) \neq 0$ on \mathcal{A} . Suppose $z_0 \in \mathcal{A}$ and $f(z_0) \neq 0$. Then, given $\epsilon > 0$ small, there exist two points $z_1, z_2 \in B_{\epsilon}(z_0)$ so that $|f(z_2)| > |f(z_0)|$ and $|f(z_1)| < |f(z_0)|$.
- 3. Evaluate the following contour integral:

$$\int_{|z|=1} \frac{\sin(e^{z^2})}{z^2} \, dz$$

- 4. Let $f : \mathcal{A} \to C$ be analytic and $\mathcal{A} \subset \mathcal{C}$ is open, connected, and bounded. Suppose there is a point $z_0 \in \mathcal{A}$ so that $|f(z)| \leq |f(z_0)|$ for all $z \in \mathcal{A}$. Then f is a constant on \mathcal{A} .
- 5. Find the residue of the function at the point indicated: $f(z) = \frac{e^{z^2}}{(z-1)^2}$ at $z_0 = 1$.
- 6. Evaluate the following itegral:

$$\int_{\theta=0}^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta},$$

for real a > 0 and $a \neq 1$. HINT: map from the interval $[0, 2\pi]$ to z by setting $z = e^{i\theta}$.

7. Let $f : \mathcal{A} \to C$ be analytic and non-zero in a region \mathcal{A} . Then f has no strict local minimum in \mathcal{A} .