MA671-001 Complex Analysis
 Spring 2020
 Problem Set 5
 DUE: 1 April 2020

1. Find the maximum of the modulus of $f(z)=e^{z^{2}}$ in the unit disk.
2. Let $f: \mathcal{A} \rightarrow C$ be analytic and suppose $f^{\prime}(z) \neq 0$ on \mathcal{A}. Suppose $z_{0} \in \mathcal{A}$ and $f\left(z_{0}\right) \neq 0$. Then, given $\epsilon>0$ small, there exist two points $z_{1}, z_{2} \in$ $B_{\epsilon}\left(z_{0}\right)$ so that $\left|f\left(z_{2}\right)\right|>\left|f\left(z_{0}\right)\right|$ and $\left|f\left(z_{1}\right)\right|<\left|f\left(z_{0}\right)\right|$.
3. Evaluate the following contour integral:

$$
\int_{|z|=1} \frac{\sin \left(e^{z^{2}}\right)}{z^{2}} d z
$$

4. Let $f: \mathcal{A} \rightarrow C$ be analytic and $\mathcal{A} \subset \mathcal{C}$ is open, connected, and bounded. Suppose there is a point $z_{0} \in \mathcal{A}$ so that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all $z \in \mathcal{A}$. Then f is a constant on \mathcal{A}.
5. Find the residue of the function at the point indicated: $f(z)=\frac{e^{z^{2}}}{(z-1)^{2}}$ at $z_{0}=1$.
6. Evaluate the following itegral:

$$
\int_{\theta=0}^{2 \pi} \frac{d \theta}{1+a^{2}-2 a \cos \theta}
$$

for real $a>0$ and $a \neq 1$. HINT: map from the interval $[0,2 \pi]$ to z by setting $z=e^{i \theta}$.
7. Let $f: \mathcal{A} \rightarrow C$ be analytic and non-zero in a region \mathcal{A}. Then f has no strict local minimum in \mathcal{A}.

