MA681–001 Functional Analysis Fall 2013 Problem Set 1 DUE: Wednesday, 11 September 2013

- 1. Show that C([0,1]) with the sup-norm is a Banach space. Let A be the set of all polynomials with rational complex coefficients (that is, those of the form a + ib with $a, b \in Q$). Show that A is dense in C([0,1]). Conclude that this Banach space is separable.
- 2. Banach Algebras. A Banach algebra is a Banach space that is also an algebra. This means that there is a multiplication of elements which is compatible with all the other structures. In particular, if $x, y \in A$, then $xy \in A$ and $||xy|| \leq ||x|| ||y||$, and the multiplication is distributive. Show that $M_n(C)$ and $(C([0,1]), || \cdot ||_{\infty})$ are Banach algebras.
- 3. Consider the Banach space $(C([0,1]), \|\cdot\|_{\infty})$. Let $a \in C([0,1])$ and define the multiplication operator $A : f \in C([0,1]) \to af$. Show that A is a bounded linear operator and compute it's norm. If |a| < 1, show that the operator 1 + A is a boundedly invertible operator.