MA681–001 Functional Analysis Fall 2013 Problem Set 3 DUE: Monday, 14 October 2013

- 1. Write the argument in the proof of Theorem III.10 in Reed and Simon that reduces the problem to showing that $T[B^X(0,r)]$ has nonempty interior for some r > 0.
- 2. Prove: A normed linear vector space is complete if and only if every absolutely summable sequence is summable. Note that a sequence $\{x_j\} \subset X$ in a NLVS X is absolutely summable if $\sum_{j=1}^{\infty} ||x_j|| < \infty$, and it is summable if the sequence of partial sums $\sum_{j=1}^{N} x_j$ has a limit in X.
- 3. Let V be an inner product space and let $\{x_j\}_{j=1}^N$ be an orthonormal set: $||x_j|| = 1$ and $\langle x_i, x_j \rangle = 0, i \neq j$. Prove that for any $x \in V$, the quantity

$$\left\|x - \sum_{j=1}^{N} c_j x_j\right\|$$

is minimized with the choice of $c_j = \langle x_j, x \rangle$. This is the basis of the least squares method.

- 4. Let \mathcal{H} be a Hilbert space.
 - (a) Prove that a strongly convergent sequence converges weakly but a weakly convergent sequence need not converge strongly.
 - (b) Prove that if a sequence $\{x_j\}$ converges strongly, than the sequence $||x_j||$ converges.