MA681–001 Functional Analysis Fall 2013 Problem Set 4

DUE: Wednesday, 6 November 2013

- (1) Suppose (A, D(A)) is densely defined. Prove that $(A^*, D(A^*))$ is closed. Show that $\Gamma(A^*) = V\Gamma(A)^{\perp}$.
- (2) Suppose that (A, D(A)) is densely defined and closed. Prove that $(A^{**}, D(A^{**})) = (A, D(A))$. Show that $\Gamma(A^{**}) = V\Gamma(A^*)^{\perp}$ and relate it to $\Gamma(A)$.
- (3) Let $T \in \mathcal{L}(\mathcal{H})$ be a bounded operator on a Hilbert space \mathcal{H} . Prove that i) $||T^*|| = ||T||$, and ii) $||T^*T|| = ||T||^2$.
- (4) Prove that an isometry on a finite-dimensional complex Hilber space (isomorphic to C^N, N < ∞) is unitary.</p>
- (5) Let T_L be the left shift operator on $\ell^2(\mathbb{C})$. Compute the spectrum of T_L . Find the eigenvalues of T_L and the corresponding eigenvectors. What can you say about the spectrum of its adjoint? Does the adjoint have any eigenvalues?
- (6) Suppose T_n is a sequence of bounded operators on a Hilbert space \mathcal{H} so that $\langle f, T_n g \rangle$ converges for each pair of vectors $f, g \in \mathcal{H}$. Prove that there exists a bounded operator T so that the sequence T_n converges weakly to T. Hint: use the principle of uniform boundedness twice.