MA681-001 Functional Analysis
 Fall 2013
 Problem Set 5

DUE: Wednesday, 20 November 2013

(1) Problem 5.4 on page 53.
(2) Problem 7.4 on page 73 .
(3) Prove that if $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ is a closed operator and a bijection then A^{-1} is bounded.
(4) Let $A \in \mathcal{L}(\mathcal{H})$ and for f analytic in a neighborhood of $\sigma(A)$, let $f(A)$ be the integral

$$
f(A)=\frac{-1}{2 \pi i} \int_{\gamma} f(z) R_{A}(z) d z
$$

where γ is a simple closed contour around $\sigma(A)$ with counter clockwise orientation. Show that $f(A)$ is a bounded operator. If g is another such function, show that $(f g)(A)=f(A) g(A)$.
(5) Continuing the preceding problem, suppose $\sigma(A)=\sigma_{1}(A) \cup \sigma_{2}(A)$ is a disjoint decomposition of the spectrum into two nonempty sets. Let γ be simple closed contour encircling $\sigma_{1}(A)$ once in the counter clockwise sense and having no intersection with $\sigma_{2}(A)$. Show that the operator

$$
P_{1}=\frac{-1}{2 \pi i} \int_{\gamma} R_{A}(z) d z
$$

is a projection operator, that $A P=P A$, and that the spectrum of $A P$ is $\sigma_{1}(A)$.

