MA681–001 Functional Analysis Fall 2013 Problem Set 5

DUE: Wednesday, 20 November 2013

- (1) Problem 5.4 on page 53.
- (2) Problem 7.4 on page 73.
- (3) Prove that if $A: D(A) \subset \mathcal{H} \to \mathcal{H}$ is a closed operator and a bijection then A^{-1} is bounded.
- (4) Let $A \in \mathcal{L}(\mathcal{H})$ and for f analytic in a neighborhood of $\sigma(A)$, let f(A) be the integral

$$f(A) = \frac{-1}{2\pi i} \int_{\gamma} f(z) R_A(z) \, dz,$$

where γ is a simple closed contour around $\sigma(A)$ with counter clockwise orientation. Show that f(A) is a bounded operator. If g is another such function, show that (fg)(A) = f(A)g(A).

(5) Continuing the preceding problem, suppose $\sigma(A) = \sigma_1(A) \cup \sigma_2(A)$ is a disjoint decomposition of the spectrum into two nonempty sets. Let γ be simple closed contour encircling $\sigma_1(A)$ once in the counter clockwise sense and having no intersection with $\sigma_2(A)$. Show that the operator

$$P_1 = \frac{-1}{2\pi i} \int_{\gamma} R_A(z) \ dz,$$

is a projection operator, that AP = PA, and that the spectrum of AP is $\sigma_1(A)$.