MA681–001 Functional Analysis Fall 2019 Problem Set 2 DUE: Wednesday, 18 September 2019

- 1. Read pages 305–306 of H-S on the set of all bounded operators from X to Y, which is denoted $\mathcal{L}(X, Y)$. Do problem A3.7, which finishes the proof that this algebra is a Banach space. When we have X = Y, show that $\mathcal{L}(X)$ is a Banach algebra.
- 2. Let $(X, \|\cdot\|)$ be a NLVS. A sequence $\{x_j\} \subset X$ is absolutely summable if $\sum_j \|x_j\| < \infty$ and summable if the sequence of partial sums $\left\{\sum_{j=1}^N x_j\right\}$ converges in X. Prove: The NLVS $(X, \|\cdot\|)$ is complete if and only if every absolutely summable sequence is summable.
- 3. Consider the Banach space $(C([0,1]), \|\cdot\|_{\infty})$. Let $a \in C([0,1])$ and define the multiplication operator $A : f \in C([0,1]) \to af$. Show that A is a bounded linear operator and compute it's norm. If $\|a\|_{\infty} < 1$, show that the operator 1 + A is a boundedly invertible operator.
- 4. Prove that the minimizer $m_0 \in \mathcal{M}$ of the distance functional dist (h, \mathcal{M}) , for fixed $h \in \mathcal{H}$, is unique.