MA681-001 Functional Analysis Fall 2019
 Problem Set 2

DUE: Wednesday, 18 September 2019

1. Read pages $305-306$ of H-S on the set of all bounded operators from X to Y, which is denoted $\mathcal{L}(X, Y)$. Do problem A3.7, which finishes the proof that this algebra is a Banach space. When we have $X=Y$, show that $\mathcal{L}(X)$ is a Banach algebra.
2. Let $(X,\|\cdot\|)$ be a NLVS. A sequence $\left\{x_{j}\right\} \subset X$ is absolutely summable if $\sum_{j}\left\|x_{j}\right\|<\infty$ and summable if the sequence of partial sums $\left\{\sum_{j=1}^{N} x_{j}\right\}$ converges in X. Prove: The NLVS $(X,\|\cdot\|)$ is complete if and only if every absolutely summable sequence is summable.
3. Consider the Banach space $\left(C([0,1]),\|\cdot\|_{\infty}\right)$. Let $a \in C([0,1])$ and define the multiplication operator $A: f \in C([0,1]) \rightarrow a f$. Show that A is a bounded linear operator and compute it's norm. If $\|a\|_{\infty}<1$, show that the operator $1+A$ is a boundedly invertible operator.
4. Prove that the minimizer $m_{0} \in \mathcal{M}$ of the distance functional $\operatorname{dist}(h, \mathcal{M})$, for fixed $h \in \mathcal{H}$, is unique.
