MA681-001 Functional Analysis Fall 2019

Problem Set 5

DUE: Wednesday, 9 November 2019

- (1) Let X be a nontrivial normed linear vector space and fix a nonzero $w \in X$. Then there is a nonzero bounded linear functional Λ on X so that $\Lambda(w) = ||w||$ and $||\Lambda||_{X^*} = 1$.
- (2) Use the Baire Category Theorem to prove that any Hamel basis of a non-finite dimensional Banach space must be uncountable.
- (3) Let X be a Banach space. Prove that a weakly open set is norm open
- and that a weakly convergent sequence is norm bounded.

 (4) Let X = C([0,1]) with norm $||f||_1 := \int_0^1 |f(s)| ds$ be a NLVS. Prove that the linear functional $L(f) = f(\frac{1}{2})$ isn't bounded.