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Yet Another Triangle for the Genocchi Numbers

RICHARD EHRENBORG ANDEINAR STEINGRÍMSSON

We give a new refinement of the Genocchi numbers, counting permutations with alternating ex-
cedances according to their first letter. These numbers are related to the Seidel triangle for the Genoc-
chi numbers and to a recent refinement by Kreweras of the Genocchi numbers.
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1. INTRODUCTION

The study of Genocchi numbers, it is claimed, goes back to Euler. In what sense that is
true is somewhat unclear, but during the last two or three decades the Genocchi numbers have
been studied by Dumont and some collaborators [2–7]. In recent years there has been a flurry
of activity in this field, viz. [1, 9–13].

The Genocchi numbers are cousins to the Euler numbers which count thealternatingper-
mutations, that is, permutationsa1a2 · · ·ad such that

a1 > a2 < a3 > · · · .

Whereas the Euler numbers thus count permutations with alternatingdescents, the Genocchi
numbers count, among other things, permutations with alternatingexcedances, that is, permu-
tationsa1a2 · · ·ad such thatai > i if and only if i is odd (andi < d).

The Genocchi numbers can be defined in many other ways, although most definitions so far
have been related to permutations with alternating excedances or variations thereof.

Several generalizations and refinements of the Genocchi numbers are known, see [1, 4, 7,
11]. The purpose of this paper is to present yet another generalization of these numbers and
to elicit the relation of that generalization to previous ones, notably to the Seidel triangle for
the Genocchi numbers, see [4].

Our generalization consists of counting permutations with alternating excedances according
to the first letter of each permutation. This is, of course, a refinement of the Genocchi numbers,
but it turns out to also include the Genocchi numbers among its constituents.

We give a recursive formula (with a bijective proof) for the number of excedance-alternating
permutations with a given first letter. We then use this formula to establish the relation of these
numbers to the Seidel triangle for the Genocchi numbers. We also show that counting these
permutations according to their last letter gives a different statistic which turns out to be equal
to a statistic studied by Kreweras [11], namely the number of so-calledDumont permutations
of the first kindwith a given first (or last) letter.

The number of excedance-alternating permutations with a given first letter and the number
of those with a given last letter satisfy the same recurrence, but have slightly different initial
conditions.

2. PRELIMINARIES

The beginning of the Seidel triangle for the Genocchi numbers is given in Table1. This
triangle can be generated from the correspondingSeidel matrix, see [4]. We shall, however,
take as our definition the recurrence defined by summing the entries in even (odd) numbered
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TABLE 1.
Seidel triangle for the Genocchi numbers.

n\k 2 3 4 5 6 7

1 1
2 1
3 1 1
4 2 1
5 2 3 3
6 8 6 3
7 8 14 17 17
8 56 48 34 17
9 56 104 138 155 155
10 608 552 448 310 155
11 608 1160 1608 1918 2073 2073

rows from right to left (left to right) to obtain the successive new entries in each row. More
precisely, the entry in rown and columnk, denotedSk

n, is given by the following:

S1
1 = 1, Sk

n = 0 if k < 2 or k > (n+ 3)/2,

Sk
2n =

∑
i≥k

Si
2n−1, Sk

2n+1 =
∑
i≤k

Si
2n.

The edges of this Seidel triangle consist of theGenocchi numbers G2n (on the rightmost
diagonal) and themedian Genocchi numbers H2n+1 (in the leftmost column). The Genocchi
numberG2n is the number of permutationsπ = a1a2 · · ·a2n+1 in the symmetric groupS2n+1
such that

ai < ai+1 if ai is odd,

ai > ai+1 if ai is even. (1)

For example, there are exactlyG4 = S4
5 = 3 permutations inS5 satisfying these conditions,

namely
21435 34215 42135. (2)

The median Genocchi numberH2n+1 is the number of permutations inS2n+1 such that

ai > i if i is odd,

ai < i if i is even.

According to Kreweras [11, p. 53], H2n+1 also counts the number of permutations satisfy-
ing (1) and beginning withn or n+ 1. For example,H5 = S2

5 = 2, corresponding to the fact
that exactly two of the permutations in (2) begin with 2 or 3.

In [7], Dumont and Viennot gave a combinatorial interpretation of all the numbers in the
Seidel triangle for the Genocchi numbers, in terms of functionsh : [n] −→ [n] satisfying
h(k) ≤ (k+ 1)/2 for all k ∈ [n], where[n] = {1, 2, . . . , n}.

The purpose of the present paper is to study the number ofexcedance-alternatingpermuta-
tions inSn.

DEFINITION 2.1. A permutationπ = a1a2 · · ·an in Sn is excedance-alternatingif it satis-
fies the following conditions:

ai > i if i is odd andi < n,

ai ≤ i if i is even. (3)
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TABLE 2.
The numbersEk

2n of excedance-alternating permutations inS2n whose first letter isk (with an added
column fork = 1).

n\k 1 2 3 4 5 6 7 8 9

2 1 1
4 1 1 2
6 3 3 6 4 4
8 17 17 34 28 36 20 20
10 155 155 310 276 380 284 324 172 172

We consider the distribution of these permutations according to their first letter and the re-
lation of that statistic to the Seidel triangle for the Genocchi numbers and to other related
permutation statistics. However, it turns out to be convenient to also consider permutations
beginning with 1 but otherwise satisfying (3). In other words, permutations for which the first
condition in (3) is replaced by:ai > i if i is odd and3≤ i < n.

DEFINITION 2.2. For k andn such that 2≤ k ≤ n, the number of excedance-alternating
permutations inSn beginning withk is denotedEk

n. Whenk = 1 we letE1
n denote the number

of permutations inSn beginning with 1 but satisfying (3) for all i > 1. Moreover, we set
Ek

n = 0 for k < 1 andk > n.

LEMMA 2.3. For all n, E1
n = E2

n.

PROOF. An excedance-alternating permutation beginning with 2 must start with 21. A per-
mutation counted byE1

n must start with 12. There is an obvious bijection between these two
sets of permutations. 2

Consider now the triangle in Table2, consisting of the numbersEk
2n. As an example,E3

6 =

6, because the excedance-alternating permutations on six letters beginning with 3 are precisely
the following six:

314265 315264 324165 325164 325461 315462.

The reason for omitting the rows for oddn is that they are identical to the respective even
numbered rows as we now show.

LEMMA 2.4. For all n ≥ 2 and for all k we have Ek2n = Ek
2n−1.

PROOF. Let Ak
n be the set of excedance-alternating permutations inSn that begin withk. A

permutationπ = a1a2 · · ·a2n in Ak
2n must havea2n−1 = 2n sincea2n−1 > 2n− 1. There is a

one-to-one correspondence between such permutations and permutations inAk
2n−1, obtained

by removing the lettera2n−1 = 2n from a permutation inAk
2n and, conversely, inserting 2n

before the last letter in a permutation inAk
2n−1. 2

REMARK 2.5. It is easy to prove that the terms in each row alternate in size. Namely, given
an excedance-alternating permutation beginning with 2k, interchanging 2k and 2k + 1 gives
an excedance-alternating permutation (beginning with 2k+ 1), but the converse is not true in
general, since 2k may be a fixed point.

Studying the triangle in Table2 and the Seidel triangle in Table1, one sees a curious rela-
tionship. Namely, each entry in an even numbered row in the Seidel triangle is a sum of two
entries from the corresponding row in Table2. For example, we have

S3
10 = 552= 380+ 172= E5

10+ E8
10.
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We shall prove that this is a general pattern.
A consequence of this, Corollary3.5, is that each of the entries in odd numbered rows in the

Seidel triangle can be written as a sum (of varying length) of numbers from the corresponding
row in Table2. As an example,

S3
11 = 1160= 380+ 284+ 324+ 172= E5

10+ E6
10+ E7

10+ E8
10.

First, we show that the triangle for excedance-alternating permutations can be constructed
recursively. Namely, each entryEk

n in this triangle equals its left neighbor,Ek−1
n , plus/minus

the sum of certain entries on the preceding row. For example, 28= 34− (3+ 3) and 380=
276+ (28+ 36+ 20+ 20).

3. MAIN RESULTS

THEOREM 3.1. If k is odd and k≥ 3, then

Ek
2n = Ek−1

2n +
∑

i≥k−1

Ei
2n−2.

If k is even, then
Ek

2n = Ek−1
2n −

∑
i≤k−2

Ei
2n−2.

Equivalently, if k is even, then

Ek
2n = Ek−1

2n +
∑

i≥k−1

Ei
2n−2−

∑
i

Ei
2n−2.

PROOF. Let An be the set of excedance-alternating permutations inSn and letAk
n be the

set of those that begin withk. Letπ = a1a2 · · ·a2n ∈ Ak
2n (soa1 = k).

Assume first that k is odd.We partitionAk
2n into two sets, according to the following two

cases.

(i) If ak−1 6= k − 1, then we can interchangek andk − 1 in π to obtain a permutation
in Ak−1

2n . Conversely, given a permutationπ in Ak−1
2n , interchangingk andk − 1 in π

yields a permutation inAk
2n. As an example, 315264 and 215364 belong toA3

5 andA2
5,

respectively.
This gives a one-to-one correspondence between permutations inAk

2n with ak−1 6= k−1
on one hand, and all the permutations inAk−1

2n on the other.
(ii) Suppose then thatak−1 = k− 1. Then

π = ka2a3 · · ·ak−2(k− 1)ak · · ·a2n.

Consider the transformation fromAk
2n to S2n−2 defined as follows, whenk ≥ 5:

π = ka2a3 · · ·ak−2(k− 1)ak · · ·a2n 7−→ a′k−2a′2a′3 · · ·a
′

k−3a′k · · ·a
′

2n = π
′,

where

a′i =

{
ai if ai < k− 1,
ai − 2 if ai > k.

In the case whenk = 3, and thusa2 = 2, we instead setπ ′ = a′3a′4 · · ·a
′

2n and the fol-
lowing reasoning goes through witha3 replacingak−2 (and some minor modifications).
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We claim thatπ ′ is excedance-alternating and thata′k−2 ≥ k− 1, so thatπ ′ belongs to
Ai

2n−2 for somei ≥ k − 1. To see thata′k−2 ≥ k − 1, observe thatak−2 > k − 2, so,
sinceak−2 6= k, (k− 1), we haveak−2 ≥ k+ 1, and thusa′k−2 ≥ k− 1.
For the placesi = 2, 3, . . . , k − 3, we have thatai > i if and only if a′i > i because
if ai ≤ i , thena′i = ai ≤ i and otherwise, ifai > i , then eithera′i = ai ≥ i or else
ai > k, soa′i > k− 2> i .
It remains to be shown that fori ≥ k we havea′i > i − 2 if and only if i is odd, that is,
if and only if ai > i . Clearly, if ai > i ≥ k, thena′i = ai − 2 > i − 2. Conversely, if
ai ≤ i , then eitherai < k−1, in which casea′i = ai < k−1≤ i−1, soa′i = ai ≤ i−2,
or elseai > k, soa′i = ai − 2≤ i − 2.

If k is even, consider the effect of switchingk andk−1 in a permutation inAk
2n. For example,

for k = 4, we have 4153627→ 315462. This always yields a permutation inAk−1
2n . Conversely,

switchingk − 1 andk in a permutation inAk−1
2n yields a permutation inAk

2n exceptwhen
ak−1 = k, because thenk−1 becomes a fixed point rather than an excedance. To establish the
second identity in the theorem we thus need to show that the number of permutations inAk−1

2n
with ak−1 = k equals

∑
i≤k−2 Ei

2n−2, that is, equals the number of permutations inA2n−2
with their first letter smaller than or equal tok − 2. To this end we consider the following
transformationπ 7−→ π ′ of such permutations,

(k− 1)a2a3 · · ·ak−2kak · · ·a2n 7−→ a′k−2a′2a′3 · · ·a
′

k−3a′k · · ·a
′

2n,

wherea′i is defined as above. Sincek, and thus alsok− 2, is even, we haveak−2 ≤ k− 2, so
π ′ begins with a letter smaller than or equal tok − 2. Definei ′ analogously toa′i , that is, by
i ′ = i if i < k− 1 andi ′ = i − 2 if i > k. We need to show thata′i > i ′ if and only if ai > i .
This can be done in a way similar to the case whenk is odd, and is omitted.

That the procedure described defines a bijection is straightforward.
The last identity in the theorem follows directly from the second one. 2

We have already noted in Lemma2.3that the first two entries in each row in the triangle of
the Ek

n’s are equal. It is also true forn ≥ 6 that the last two entries are equal. This follows
immediately from Theorem3.1. Moreover, the last entries equal the sum of all numbers in the
preceding row and the first entries equal the sum of all but the first entry in the preceding row.

COROLLARY 3.2. For all n ≥ 2 we have E22n =
∑

i≥2 Ei
2n−2 and E2n−1

2n =
∑

i Ei
2n−2.

Thus, E2
2n equals the number of excedance-alternating permutations inS2n−2.

PROOF. Any permutationπ ∈ A2
2n must begin with 21. Removing 21 fromπ and decreas-

ing each remaining letter by 2 defines a bijection to the (disjoint) unionA2
2n−2∪ A3

2n−2∪· · ·∪

A2n−2
2n−2 which establishes the first identity.
The second identity follows by settingk = 2n in the second identity in Theorem3.1 and

observing thatE2n
2n = 0. 2

REMARK 3.3. It is proved in [8] that E2
2n, being equal to the number of excedance-alter-

nating permutations inS2n−2, is the Genocchi numberG2n−2. It is also shown there thatE2
n

is odd for alln. In fact, E2
2n is congruent to(−1)n modulo 4. The numbersE3

2n are congruent
to (−1)n · 2 modulo 8. The numbersEk

2n, for n > k ≥ 4, are congruent to 4 modulo 8. This
can be proved by induction, using Theorem3.1. Combinatorially, it is clear whyEk

n is even
for k ≥ 3. Namely, in an excedance-alternating permutation beginning with a letter≥ 3, the
letters 1 and 2 are interchangeable.



598 R. Ehrenborg and E. Steingrı́msson

TABLE 3.
The numbersK k

2n+1 counting excedance-alternating permutations inS
2n+1

whose last letter isk.

n\k 1 2 3 4 5 6 7 8 9

1 1
3 1 1 1
5 3 3 5 3 3
7 17 17 31 25 31 17 17
9 155 155 293 259 349 259 293 155 155

THEOREM 3.4. For all n and k with2≤ k ≤ n+ 1, we have Sk2n = En+3−k
2n + En+k

2n .

PROOF. The proof is by induction onn. The base case isn = 2 which is easily checked.
Assuming that the statement is true forn− 1, we have

Sk
2n =

∑
i≥k

Si
2n−1 =

∑
i≥k

i∑
j=2

Sj
2(n−1) =

∑
i≥k

i∑
j=2

(En+2− j
2n−2 + En−1+ j

2n−2 )

=

∑
i≥k

(
i∑

j=2

En+2− j
2n−2 +

i∑
j=2

En−1+ j
2n−2

)

=

∑
i≥k

(
n∑

j=n+2−i

E j
2n−2+

n−1+i∑
j=n+1

E j
2n−2

)

=

∑
i≥k

(∑
j≤n

E j
2n−2−

∑
j≤n+1−i

E j
2n−2+

∑
j≥n+1

E j
2n−2−

∑
j≥n+i

E j
2n−2

)

=

∑
i≥k

(∑
j

E j
2n−2−

( ∑
j≤n+1−i

E j
2n−2+

∑
j≥n+i

E j
2n−2

))

=

∑
i≥k

( ∑
j≥n+2−i

E j
2n−2−

∑
j≥n+i

E j
2n−2

)
.

We can now rewrite each of the inner sums on the last line, using the first or the last identity
in Theorem3.1. Sincen+ 2− i andn+ i have the same parity, either both or neither of the
rewritten expressions will contain the term

∑
i Ei

2n−2, so these terms will cancel each other,
if present, and we obtain∑

i≥k

[(En+3−i
2n − En+2−i

2n )− (En+1+i
2n − En+i

2n )] = En+3−k
2n + En+k

2n ,

as desired. 2

COROLLARY 3.5. For all n and k with2≤ k ≤ n+ 1, Sk
2n+1 =

∑n+k
i=n+3−k Ei

2n.

PROOF. We have

Sk
2n+1 =

k∑
i=2

Si
2n =

k∑
i=2

(En+3−i
2n + En+i

2n ) =

k∑
i=2

En+3−i
2n +

k∑
i=2

En+i
2n

=

n+1∑
i=n+3−k

Ei
2n +

n+k∑
i=n+2

Ei
2n =

n+k∑
i=n+3−k

Ei
2n.

2
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Together with Theorem3.4 the preceding corollary says that summingEn+3−k
2n and En+k

2n
givesSk

2n, whereas summingall the Ei
2n for i betweenn+ 3− k andn+ k yieldsSk

2n+1.

4. OTHER STATISTICS AND FURTHER IDENTITIES

Interestingly, counting excedance-alternating permutations by theirlast letter yields a statis-
tic equal to that for the permutations satisfying (1), that is, permutationsa1a2 · · ·an such that
ai < ai+1 if and only if ai is odd. The triangle for the number of such permutations, counted
by their first letter, is given in Table3. In fact, counting these permutations by theirlast letter
yields the same statistic. This statistic was studied by Kreweras in [11].

The recursive definition of the triangle in Table3 is similar to the recursion for the triangle in
Table2 which was established in Theorem3.1. That is, the recursion for these two triangles is
the same except that they have different initial conditions: we haveE2

2 = 1, whereasK 2
1 = 0.

The proof that the numbers of excedance-alternating permutations with a given last letter
satisfy this recurrence is analogous to the proof of Theorem3.1and is omitted.

A consequence of this is that Tables2 and3 agree fork = 1, 2, whereas fork ≥ 3 the table
for Ek

2n can be obtained by adding each row of the table forK k
2n+1 to the next row of the same

table, after shifting the first of these two rows two steps to the right. In other words, we have
the following theorem.

THEOREM 4.1. For all k and all n≥ 2 we have Ek2n = K k
2n−1+ K k−2

2n−3.

COROLLARY 4.2. For all n and k we have:

Sk
2n = K n+3−k

2n−1 + K n+1−k
2n−3 + K n+k

2n−1+ K n+k−2
2n−3 ,

Sk
2n+1 =

n+k∑
i=n+3−k

(K i
2n−1+ K i−2

2n−3).

PROOF. Follows from Theorem3.4, Corollary3.5and Theorem4.1. 2

Finally, we list, without proof, a few further results, all of which can be proved easily from
the recurrence for the numbersEk

2n and their relationship to the Seidel triangle for the Genoc-
chi numbers.

THEOREM 4.3.
(1) Ek

2n + Ek
2n−2 = E2n−k

2n + E2n−k
2n−2.

(2) E2n−k
2n − Ek

2n = Sn+1−k
2n−3 .

(3) En+1
2n + En+2

2n = H2n+1 where H2n+1 = S2
2n is themedian Genocchi number.
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