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Yet Another Triangle for the Genocchi Numbers

RICHARD EHRENBORG AND EINAR STEINGRIMSSON

We give a new refinement of the Genocchi numbers, counting permutations with alternating ex-
cedances according to their first letter. These numbers are related to the Seidel triangle for the Genoc-
chi numbers and to a recent refinement by Kreweras of the Genocchi numbers.
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1. INTRODUCTION

The study of Genocchi numbers, it is claimed, goes back to Euler. In what sense that is
true is somewhat unclear, but during the last two or three decades the Genocchi numbers have
been studied by Dumont and some collaborat2+S] In recent years there has been a flurry
of activity in this field, viz. fl, 9-13.

The Genocchi numbers are cousins to the Euler numbers which cousmteheatingper-
mutations, that is, permutatioaga; - - - a4 such that

a >a <ag>---

Whereas the Euler numbers thus count permutations with alterrdgsumentsthe Genocchi
numbers count, among other things, permutations with alternexiogdanceghat is, permu-
tationsajaz - - - ag such that; > i if and only ifi is odd (and < d).

The Genocchi numbers can be defined in many other ways, although most definitions so far
have been related to permutations with alternating excedances or variations thereof.

Several generalizations and refinements of the Genocchi numbers are knowh 4sége [

11]. The purpose of this paper is to present yet another generalization of these numbers and
to elicit the relation of that generalization to previous ones, notably to the Seidel triangle for
the Genocchi numbers, se§.

Our generalization consists of counting permutations with alternating excedances according
to the first letter of each permutation. This is, of course, a refinement of the Genocchi numbers,
but it turns out to also include the Genocchi numbers among its constituents.

We give a recursive formula (with a bijective proof) for the number of excedance-alternating
permutations with a given first letter. We then use this formula to establish the relation of these
numbers to the Seidel triangle for the Genocchi numbers. We also show that counting these
permutations according to their last letter gives a different statistic which turns out to be equal
to a statistic studied by Krewerak]], namely the number of so-callégLimont permutations
of the first kindwith a given first (or last) letter.

The number of excedance-alternating permutations with a given first letter and the number
of those with a given last letter satisfy the same recurrence, but have slightly different initial
conditions.

2. PRELIMINARIES

The beginning of the Seidel triangle for the Genocchi numbers is given in Taflkis
triangle can be generated from the correspondaglel matrixsee f]. We shall, however,
take as our definition the recurrence defined by summing the entries in even (odd) numbered
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TABLE 1.
Seidel triangle for the Genocchi numbers.
mk | 2 3 4 5 6 7

[SVIS

1

1

1

2

2 3

8 6 3

8 14 17 17

56 48 34 17

56 104 138 155 155
608 552 448 310 155
608 1160 1608 1918 2073 2073

e
PERBoo~v~ouhrwNE

rows from right to left (left to right) to obtain the successive new entries in each row. More
precisely, the entry in row and columrk, denote(ﬂi, is given by the following:

St=1, =0 ifk<2 or k>{n+3/2
%n = Z %'n—l’ $n+l = Z %n'
i>k i<k

The edges of this Seidel triangle consist of tAenocchi numbers £ (on the rightmost
diagonal) and thenedian Genocchi numbersyf 1 (in the leftmost column). The Genocchi
numberG, is the number of permutations = ajay - - - agn+1 in the symmetric grougon -1

such that
a < a1 if g is odd,
a > a1 if g is even. Q)

For example, there are exactBy = % = 3 permutations irf5 satisfying these conditions,
namely

21435 34215 42135 @)
The median Genocchi numbEkkn 1 is the number of permutations 8,41 such that
a > i if i is odd,
g <i if i is even.

According to Kreweras11, p. 53], Hon+1 also counts the number of permutations satisfy-
ing (1) and beginning witm or n 4+ 1. For exampleHs = S§ = 2, corresponding to the fact
that exactly two of the permutations ig)(begin with 2 or 3.

In [7], Dumont and Viennot gave a combinatorial interpretation of all the numbers in the

Seidel triangle for the Genocchi numbers, in terms of functions[n] — [n] satisfying
hk) < (k+1)/2 for allk € [n], where[n] = {1, 2, ..., n}.

The purpose of the present paper is to study the numbexaafdance-alternatingermuta-
tions inSp.

DEFINITION 2.1. A permutationt = ajaz - - - a, in Sy, is excedance-alternatinigit satis-
fies the following conditions:

a > i ifi isoddand < n,
a <i if i iseven. 3)
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TABLE 2.
The numbersE‘z‘n of excedance-alternating permutationsSi, whose first letter ik (with an added

column fork = 1).
n\k | 1 2 3 4 5 6 7 8 9

1
1 2
3 6 4 4
17 17 34 28 36 20 20
10 155 155 310 276 380 284 324 172 172

2 1
4 1
6 3
8

We consider the distribution of these permutations according to their first letter and the re-
lation of that statistic to the Seidel triangle for the Genocchi numbers and to other related
permutation statistics. However, it turns out to be convenient to also consider permutations
beginning with 1 but otherwise satisfying)( In other words, permutations for which the first
condition in @) is replaced bya; > i ifi isodd and3 <i < n.

DEFINITION 2.2. Fork andn such that 2< k < n, the number of excedance-alternating
permutations i, beginning withk is denotecEX. Whenk = 1 we letE} denote the number
of permutations inS, beginning with 1 but satisfying3j for all i > 1. Moreover, we set
EK=0fork < 1andk > n.

LEMMA 2.3. Foralln, E} = E2.

PROOF An excedance-alternating permutation beginning with 2 must start with 21. A per-
mutation counted b¥} must start with 12. There is an obvious bijection between these two
sets of permutations. ]

Consider now the triangle in TabR consisting of the numbelE‘.'z‘n. As an exampIeEg’ =
6, because the excedance-alternating permutations on six letters beginning with 3 are precisely
the following six:

314265 315264 324165 325164 325461 315462

The reason for omitting the rows for oddis that they are identical to the respective even
numbered rows as we now show.

LEMMA 2.4. Foralln > 2and for all k we have §, = EX .

PROOF Let Aﬁ be the set of excedance-alternating permutatiod ithat begin withk. A
permutationt = ajay - - - ap, in Alén must haveapn_1 = 2n sinceayn_1 > 2n— 1. Thereis a
one-to-one correspondence between such permutations and permuta#dps,inobtained
by removing the letteap,—1 = 2n from a permutation irA‘gn and, conversely, insertingn2
before the last letter in a permutationmgn_l. o

REMARK 2.5. Itis easy to prove that the terms in each row alternate in size. Namely, given
an excedance-alternating permutation beginning wikthirgerchanging R and X + 1 gives
an excedance-alternating permutation (beginning wkth-21), but the converse is not true in
general, sincelRmay be a fixed point.

Studying the triangle in Tabl2 and the Seidel triangle in Table one sees a curious rela-
tionship. Namely, each entry in an even numbered row in the Seidel triangle is a sum of two
entries from the corresponding row in TaleFor example, we have

Spy = 552= 380+ 172= E; + ES,,
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We shall prove that this is a general pattern.

A consequence of this, Corollay5, is that each of the entries in odd numbered rows in the
Seidel triangle can be written as a sum (of varying length) of numbers from the corresponding
row in Table2. As an example,

S} = 1160= 380+ 284+ 324+ 172= EJ, + E3y + E{y + ES,,

First, we show that the triangle for excedance-alternating permutations can be constructed
recursively. Namely, each entt:}/',ﬁ in this triangle equals its left neighbcEJﬁ*l, plus/minus
the sum of certain entries on the preceding row. For examples; 328 — (3 + 3) and 380=
276+ (28+ 36+ 20+ 20).

3. MAIN RESULTS
THEOREM3.1. If k is odd and k> 3, then

k k—1 i
Eon=Exn + Z E|2n—2'
i>k—1

If k is even, then
k k-1 i
Eon = E2n - Z E|2n—2'
i<k—2
Equivalently, if k is even, then

k k-1 i i
Eon=Exn + Z Eon_2— Z Eon_2-
i>k_1 i

PROOF Let A, be the set of excedance-alternating permutatiorn$,iand IetAﬁ be the
set of those that begin with Letn = ajap---agn € Agn (soa; = K).

Assume first that k is od#Ve partition Agn into two sets, according to the following two
cases.

(i) If ak—1 # k — 1, then we can interchandeandk — 1 in 7 to obtain a permutation
in A'é;l. Conversely, given a permutatianin Aggl, interchangink andk — 1 in
yields a permutation i\s.. As an example, 315264 and 215364 belongd@mnd AZ,
respectively.

This gives a one-to-one correspondence between permutatiééﬂvith a1 £ k-1
on one hand, and all the permutationsﬁiih_1 on the other.

(i) Suppose thentha 1 = k — 1. Then

7w =kaag - - - ak—2(K — 1)ak - - - an.
Consider the transformation froﬁ\én to Son—2 defined as follows, whek > 5:
7 =Kkapag---ag_o(k — Day---ay +— a'/k—Za/Zaé"'al/(—3al/<"'a/2n :7-[/,
where
T if a <k—1,
F=1a-2 ifa>k

In the case whek = 3, and thusa; = 2, we instead set’ = aja; - - - a;, and the fol-
lowing reasoning goes through wid replacingax—» (and some minor modifications).
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We claim thatz’ is excedance-alternating and tlagt , > k — 1, so thatt” belongs to
Ai2n_2 for somei > k — 1. To see thaa{(_2 > k — 1, observe thady_»> > k — 2, so,
sinceax_2 # k, (k — 1), we haveax_» > k+ 1, and thusy_, > k — 1.

For the places = 2,3,...,k — 3, we have that; > i if and only if a{ > i because
if & <i,thena =& < i and otherwise, it > i, then eithem’ = & > i or else
a >k,soa >k—2>1i.

It remains to be shown that for> k we havea| > i — 2 if and only ifi is odd, that is,
if and only if; > i. Clearly, ifg; > i > k, thena/ = a — 2 > i — 2. Conversely, if
g <i,theneitheg < k—1,inwhichcase&l =a <k—-1<i—-1,s0a =g <i-2,

orelseg > k,soa =g —2<i—2.

If k is even consider the effect of switchirigandk — 1 in a permutation irAkn. For example,

fork = 4, we have 415362> 315462. This always yields a permutatiorAl L. Conversely,
switchingk — 1 andk in a permutation inA'gr:l yields a permutation im';n exceptwhen

ak—1 = k, because thek— 1 becomes a fixed point rather than an excedance. To establish the
second identity in the theorem we thus need to show that the number of permutatl\ﬁjé in

with ax_1 = k equalszisk_2 EiZn_Z, that is, equals the number of permutationsAis_»

with their first letter smaller than or equal ko— 2. To this end we consider the following
transformationt — 7’ of such permutations,

(k — Dagag- - - ax_okax---agn +— ;;1{(_2;5{2;;1’3 - a&_sa{( - a,2n7

wherea/ is defined as above. Sinkgand thus alsé& — 2, is even, we havex_> < k — 2, so
7" begins with a letter smaller than or equakte- 2. Definei” analogously ta&/, that is, by
i"=iifi <k—1andi’=i—2ifi > k. We need to show tha > i’ ifand only ifg; > i.
This can be done in a way similar to the case wkénodd, and is omitted.

That the procedure described defines a bijection is straightforward.

The last identity in the theorem follows directly from the second one. |

We have already noted in Lemr@a3 that the first two entries in each row in the triangle of
the E,'ﬁ’s are equal. It is also true far > 6 that the last two entries are equal. This follows
immediately from Theorer.1 Moreover, the last entries equal the sum of all numbers in the
preceding row and the first entries equal the sum of all but the first entry in the preceding row.

COROLLARY 3.2. Foralln > 2we have B, = Y, _,Eb, ,and En ' = Y E, .

Thus, I%n equals the number of excedance-alternating permutatioss,ins.

PROOF Any permutationr € A%n must begin with 21. Removing 21 fromand decreas-
ing each remaining letter by 2 defines a bijection to the (disjoint) Uﬁi%?,rlg u Agnfz U---u
A2'~2 which establishes the first identity.

The second identity follows by setting= 2n in the second identity in Theoref11and
observing thaEs" = 0. o

REMARK 3.3. It is proved in B] that E%n, being equal to the number of excedance-alter-
nating permutations itson_2, is the Genocchi numbéso,_». It is also shown there theﬁﬁ
is odd for alln. In fact, E%n is congruent tq—1)" modulo 4. The number‘égn are congruent
to (=1)" - 2 modulo 8. The numberE'Z‘n, forn > k > 4, are congruent to 4 modulo 8. This
can be proved by induction, using Theor@\. Combinatorially, it is clear wh;E,'ﬁ is even
for k > 3. Namely, in an excedance-alternating permutation beginning with a fetBerthe
letters 1 and 2 are interchangeable.
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TABLE 3.
The numbersK'Z‘nH counting excedance-alternating permutationSé'rr]]H whose last letter ik&.

mk| 1 2 3 4 5 6 7 8 9

1

1 1 1

3 3 5 3 3
17 17 31 25 31 17 17

1
3
5
7
9 155 155 293 259 349 259 293 155 155

THEOREM3.4. For all n and k with2 < k < n + 1, we have § = E)3 % 4 EXFK.

PrROOFE The proof is by induction om. The base case is = 2 which is easily checked.
Assuming that the statement is true for 1, we have

i .
§anZZSZn—lzzzgj(n—l) ZZ(E2:22J gn 1;])

i>k ik j=2 i>k j=2
n+2—j n—1+j
=, (Z Eon2 +ZE2n72 )
i~k
n—1+i
- (ZEH2+ZE2n2>
j=n+2—i j=n+1
j
- (ZEZH 2= D Bt ) By o > E._ 2)
i=k \j=n j<n+i-i j=n+1 j>n+i
= (ZEZnZ < > Ehot Y Eh 2))
izk \ j<nt1-i j=n+i
= j
3% eha- ¥ )
ik \j=n42-i j=n+i

We can now rewrite each of the inner sums on the last line, using the first or the last identity
in Theorem3.1 Sincen + 2 —i andn + i have the same parity, either both or neither of the

rewritten expressions will contain the tefm; E,,_,, so these terms will cancel each other,
if present, and we obtain

Z [(En+3 i Egl::-Z—i) (En+l+| Eg:i)] — Eg:S—k + Eg;—k7
i>k

as desired. O

COROLLARY 3.5. Forallnand k with2 <k <n+1, §2<n+1 = Z{‘+,'f+3 K E' .

ProoF We have
k

K K K
F1= =) Ex* ' +ERH =) ERT 4y ERY
i=2 = i=2

i=2
n+1 n+k n+k
i i i
> Ent ) En= ) Eb
i=n+3—k i=n+2 i=n+3—k
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Together with Theoren3.4 the preceding corollary says that summiEQTs‘k and Egrfk
gives%n, whereas summinall the E}, for i betweem + 3 — k andn + k yields §2<n+1.

4. QOTHER STATISTICS AND FURTHER IDENTITIES

Interestingly, counting excedance-alternating permutations byléstletter yields a statis-
tic equal to that for the permutations satisfyirig, that is, permutationa;a; - - - a, such that
a < g1 if and only if g is odd. The triangle for the number of such permutations, counted
by their first letter, is given in Tabl8. In fact, counting these permutations by tHast letter
yields the same statistic. This statistic was studied by Krewerdsl]n [

The recursive definition of the triangle in Tal3és similar to the recursion for the triangle in
Table2 which was established in TheoreylL That is, the recursion for these two triangles is
the same except that they have different initial conditions: we Eéve 1, wherea ? = 0.

The proof that the numbers of excedance-alternating permutations with a given last letter
satisfy this recurrence is analogous to the proof of The@dmand is omitted.

A consequence of this is that Tab2and3 agree folk = 1, 2, whereas fok > 3 the table
for E'z‘n can be obtained by adding each row of the tabld¢§{+1 to the next row of the same
table, after shifting the first of these two rows two steps to the right. In other words, we have
the following theorem.

_ wk k—2
THEOREMA4.1. For allk and all n> 2 we have gn = K51 + K5 %
COROLLARY 4.2. For all n and k we have:
_ wh+3—k n+1-k n+k n+k—2
S = Koo + KoK + KO + K52,

n+k
. -
Shii= Y. (K g+ K2y
i=n+3—k
PROOFE Follows from Theoren3.4, Corollary3.5and Theorend.1 m|

Finally, we list, without proof, a few further results, all of which can be proved easily from
the recurrence for the numbdi%n and their relationship to the Seidel triangle for the Genoc-
chi numbers.

THEOREMA4.3.

1 Ek k

1) Ex4 Eon 2

(@) Bty e 3 . . .

3) By + Egn = Hony1 Where Bpi1 = Sﬁn is themedian Genocchi number

E2n—k+ E2n—k.
_ ik 22
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