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1 Introduction

A (convex) d-polytope is said to be Hamiltonian if its edge-graph is. It is well-known
that simple 3-polytopes are not, in general, Hamiltonian, though non-Hamiltonian examples
require at least 38 vertices [3, 4]. The question of whether all simple d-polytopes, d > 3,
are Hamiltonian or not remains unsettled. Barnette (see [8]) conjectures that all simple
4-polytopes are Hamiltonian. In partial support of this conjecture, simple 4-prisms over
4-colorable (and hence all) 3-polytopes [8], and duals of cyclic d-polytopes [2, Section 17.2]
are Hamiltonian.

The duals of simple d-polytopes are simplicial d-polytopes, and their boundary complexes
are therefore simplicial (d�1)-spheres. Thus it is natural to say that a pure simplicial (d�1)-
complex has a Hamiltonian path if its facets (maximal faces) can be ordered F1; : : : ; Fm such
that Fi and Fi+1 are adjacent (intersect in a set of cardinality d� 1) for all 1 � i � m� 1.
If, further, F1 and Fm are also adjacent, then we say that the simplicial complex has a
Hamiltonian cycle or is Hamiltonian.

In this paper we prove that all squeezed 2- and 3-spheres are Hamiltonian. In creating
the collection of squeezed (d � 1)-spheres, Kalai [5] establishes a large lower bound on the
number of labeled simplicial (d�1)-spheres, and hence a substantial gap between the number
of spheres and the number of simplicial convex d-polytopes. This collection extends the
construction of [1] and thus contains at least one polytopal representative for every possible
simplicial d-polytope f -vector. As a consequence, should there be a non-Hamiltonian simple
4-polytope, it cannot be detected by its f -vector alone.
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2 De�nitions

We begin by reviewing the construction and some basic properties of squeezed balls and
spheres [5, 7].

For an integer n � 1, let [n] denote the set f1; : : : ; ng. For a nonnegative integer d, [n](d)

is the set of all subsets of [n] of cardinality d. For F 2 [n](d), we will write F � i for F n fig
and F + i for F [ fig. For C � 2[n], de�ne cone(C; 0) = fF + 0 : F 2 Cg.

Let F;G 2 [n](d); F = fa1; : : : ; adg; G = fb1; : : : ; bdg, where a1 < � � � < ad and b1 < � � � <
bd. We say F �p G if ai � bi for 1 � i � d. De�ne F �L G if min(F 4G) 2 F where F 4G
is the symmetric di�erence of the sets F and G. A collection ordered with respect to �L is
said to be in lexicographic order.

The reverse lexicographic order on [n](d) is de�ned by F <RL G if max(F 4 G) 2 G.
De�ne q(F;G) = minfj : ai = bi for all i � jg taking q(F;G) = d+ 1 if ad 6= bd.

Now suppose F is a proper subset of [n]. Let j = minfi 2 [n] : i 62 Fg and k = maxfi 2
[n] : i 62 Fg. We call f1; : : : ; j � 1g the left set of F and fk + 1; : : : ; ng the right set of F .
If s; t 62 F , s; t 2 [n], s < t, but i 2 F for all s + 1 � i � t � 1, then fs + 1; : : : ; t � 1g is a
middle set of F . Note that left, right, or middle sets may be empty.

Suppose j 2 F � [n]. If j is not in the left set of F , de�ne `(F; j) = maxfi 2 [n] :
i < j; i 62 Fg and L(F; j) = (F � j) + `(F; j). If j is not in the right set of F , de�ne
r(F; j) = minfi 2 [n] : i > j; i 62 Fg and R(F; j) = (F � j) + r(F; j). These de�nitions
correspond to \pushing" a contiguous set of elements of F to the \left" or \right" respectively.
For example if F is the set f1; 2; 4; 5; 6; 7g, then L(F; 5) is the set f1; 2; 3; 4; 6; 7g and R(F; 4)
is the set f1; 2; 5; 6; 7; 8g.

Let d be a positive odd integer. De�ne Fd(n) to be the collection of all members of
[n]d+1 having even cardinality left, right, and middle sets. Note that for F 2 Fd(N), if we
write F = fa1; : : : ; ad+1g, we implicitly assume that the elements have been indexed so that
a1 < � � � < ad+1. For even positive d, let Fd(n) = cone(Fd�1; 0).

For positive d, consider a nonempty subcollection, I, of Fd[n] that is an initial set of Fd[n]
with respect to the partial order �p. Equivalently, if F 2 I, then L(F; j) 2 I for every j for
which L(F; j) 2 Fd[n]. Kalai [5] proves that the simplicial d-complex B(I) = fG : G � F
for some F 2 Ig is topologically a d-ball. He calls such a simplicial complex a squeezed

ball. Note that the facets of B(I) are precisely the sets contained in I. Kalai observes that
squeezed d-balls for even d are just those simplicial complexes of the form cone(B(J); 0),
where J is some initial set with respect to �p of Fd�1(n).

The boundary S(I) = @B(I) of a squeezed ball B(I) is topologically a (d � 1)-sphere,
and is called a squeezed sphere. The facets of S(I) are those subsets of B(I) of cardinality d
that are contained in exactly one facet of B(I).
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Kalai proves that the reverse lexicographic ordering of the facets of a squeezed ball B(I)
is a shelling order. By examining this shelling, one can readily characterize the facets of S(I)
[7].

Proposition 2.1 Suppose d is odd and B(I) is a squeezed d-ball.
Let F = fa1; : : : ; ad+1g 2 I be a facet of B(I) and ai 2 F . Then F � ai is a facet of S(I)

if and only if:

1. i is even and ai is in the left set of F , or

2. i is odd and R(F; ai) 62 I.

Suppose d is even and B(I) =cone(B(J); 0) is a squeezed d-ball. Then F 2 B(I) of

cardinality d is a facet of S(I) if and only if:

1. F is a facet of B(J), or

2. F = G+ 0 where G is a facet of S(J).

3 Squeezed 2-Spheres are Hamiltonian

Let S be any simplicial (d � 1)-complex with vertex set V , F be a facet of S, and v =2 V .
The simplicial complex resulting from the stellar subdivision of F is (S n fFg) [ fG + v :
G � F;G 6= Fg. A simplicial (d� 1)-complex is a stacked sphere if it can be obtained from
the boundary of a d-simplex, fG � H : G 6= Hg (where H has cardinality d + 1), by a
sequence of stellar subdivisions of facets. Stacked spheres are all polytopal, and are precisely
the boundary complexes of stacked polytopes. Stacked polytopes are dual to truncation
polytopes, those obtained from a d-simplex by a sequence of vertex truncations.

An easy proof by induction shows that stacked spheres are Hamiltonian (and in fact
stacked 2-spheres admit precisely three Hamiltonian cycles [6]). We will show that squeezed
2-spheres are Hamiltonian by showing that they are stacked.

In this section we use the notation vi instead of just i when referring to a vertex of a
squeezed ball or sphere. We will also abbreviate a set fvi; vj; vk; v`g by vivjvkv`, with the
convention that i < j < k < `.

Theorem 3.1 Squeezed 2-spheres are stacked.
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Proof. Let B be a squeezed 3-ball with vertex set fv1; : : : ; vng. Its facets are faces of
cardinality 4, and its subfacets are faces of cardinality 3. Let @B denote the boundary
complex of B. The facets of @B are those subfacets of B that are contained in exactly one
facet of B.

We will prove the theorem by induction on the number of vertices of @B. Note that if
@B is the boundary of a simplex, we are done.

We say a facet F of B is of type j if j = minfi : vi 2 Fg. See, for example, the 3-ball in
Figure 1, in which we abbreviate vi as i. Let k be the maximum type of a facet of B.

F1 1 2 3 4
F2 1 2 4 5
F3 1 2 5 6
F4 1 2 6 7
F5 1 2 7 8

� F6 2 3 4 5
� F7 2 3 5 6
� F8 2 3 6 7
� F9 2 3 7 8

F10 3 4 5 6
F11 3 4 6 7

Figure 1: The facets of a squeezed 3-ball, with its type 2 facets indicated by �

A useful consequence of the fact that B is squeezed is that every set of the form
vivi+1vjvj+1 where j � k + 2 is a facet of B.

Case I: Assume k = 1. By the de�nition of a squeezed ball, the facets of B must be
of the form v1v2v3v4; v1v2v4v5,. . . ,v1v2vn�1vn. Thus they each contain vertices 1 and 2, and
each facet of the form v1v2vj�1vj meets the facet v1v2vj�2; vj�1 in the common face v1v2vj�1,
5 � j � n. Starting with v1v2v3v4, with the addition of each facet v1v2vj�1vj, 5 � j � n,
@B changes by a stellar subdivision of the sphere facet v1v2vj�1. Therefore @B is a stacked
sphere.

Case II: Suppose k � 2. Let F be the lexicographically-least facet of type k. So
F = vkvk+1vk+2vk+3. Note that no other facets of type k contain vk+2. For example, in
Figure 1, k = 3, F = F10, and vk+2 = v5.

We �rst show that vk+2 is contained in exactly three facets of @B. For 1 � j � k � 1
let Aj = vjvj+1vk+2vk+3 and Bj = vjvj+1vk+1vk+2. Both Aj and Bj are facets of B since B

4



is squeezed. The set of facets of B containing vk+2 is fF;A1; B1; : : : ; Ak�1; Bk�1g. Now, for
1 � j � k � 1, we have vjvj+1vk+2 = Aj \ Bj. So vjvj+1vk+2 62 @B. For 2 � j � k � 1,
vjvk+1vk+2 = Bj \ Bj�1. Also, for the same j, we have vjvk+2vk+3 = Aj \ Aj�1. Thus
vjvk+1vk+2; vjvk+2vk+3 62 @B for 2 � j � k � 1. Finally, vkvk+2vk+3 = Ak�1 \ F , and
vkvk+1vk+2 = Bk�1 \ F . So vkvk+1vk+2; vkvk+2vk+3 62 @B. This leaves vk+2 only in the three
facets v1vk+1vk+2, v1vk+2vk+3 and vk+1vk+2vk+3 of @B.

Next, we construct a new simplicial complex from the ball B. Its facets are obtained
from the facets of B by removing F and, for each 1 � j � k � 1, replacing Aj and Bj with
Cj = vjvj+1vk+1vk+3. This is a squeezed ball B0 with vertices v01; : : : ; v

0

n�1 where v
0

j = vj for
1 � j � k + 1 and v0j = vj+1 for k + 2 � j � n� 1. See the example in Figure 2.

B

1 2 3 4
B1 1 2 4 5
A1 1 2 5 6

1 2 6 7
1 2 7 8

B2 2 3 4 5
A2 2 3 5 6

2 3 6 7
2 3 7 8

F 3 4 5 6
3 4 6 7

B0

1 2 3 4
C1 1 2 4 6

1 2 6 7
1 2 7 8

C2 2 3 4 6
2 3 6 7
2 3 7 8

3 4 6 7

Figure 2: The facets of B and B0

The collection F(@B) of facets of @B not containing vk+2 is identical to the collection
F(@B0) of facets of @B0 apart from v1vk+1vk+3. This correspondence is detailed in Figure 3.

Case 1: Suppose G = vivi+1vjvj+1 2 B and G � vi is a facet of @B not containing
vk+2. Then R(G; vi) 62 B and necessarily j > k + 2 (using the fact that B is squeezed).
So G 62 fF;A1; B1; : : : ; Ak�1; Bk�1g and R(G; vi) 62 fC1; : : : ; Ck�1g. Therefore G 2 B0,
R(G; vi) 62 B0, and G� vi 2 @B0.

Case 2: Suppose G = v1v2vjvj+1 2 B and G� v2 is a facet of @B not containing vk+2.
Then G 62 fF;A1; B1; : : : ; Ak�1; Bk�1g. Therefore G 2 B0 and G� v2 2 @B0.
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F(@B) F(@B0)

Case 1: vivi+1vjvj+1 � vi vivi+1vjvj+1 � vi

Case 2: v1v2vjvj+1 � v2 v1v2vjvj+1 � v2

Case 3a: vkvk+1vk+2vk+3 � vk+2 vk�1vkvk+1vk+3 � vk�1

Case 3b: vivi+1vk+2vk+3 � vk+2 (i < k) vivkvi+1vk+1vk+3 � vk+1

Case 3c: vivi+1vjvj+1 � vj (j 6= k + 2) vivi+1vjvj+1 � vj

Case 4: v1v2v3v4 � v4 v1v2v3v4 � v4

Figure 3: Correspondence between F(@B) and F(@B0)

Case 3a: Suppose G = vkvk+1vk+2vk+3 2 B and G � vk+2 is a facet of @B not con-
taining vk+2. Then G = F and H = vkvk+1vk+3vk+4 = R(G; vk+2) 62 B. Now Ck�1 =
vk�1vkvk+1vk+3 2 B0 and R(Ck�1; vk�1) (with respect to B0) is H 62 B0. Therefore Ck�1 �
vk�1 2 @B0.

Case 3b: Suppose G = vivi+1vk+2vk+3 2 B and G� vk+2 is a facet of @B not containing
vk+2, where i < k. Then G = Ai and H = vivi+1vk+3vk+4 = R(G; vk+2) 62 B. Now
Ci = vivi+1vk+1vk+3 2 B0 and R(Ci; vk+1) (with respect to B0) is H 62 B0. Therefore
Ci � vk+1 2 @B0.

Case 3c: Suppose G = vivi+1vjvj+1 2 B and G � vj is a facet of @B not containing
vk+2, where j 6= k + 2. Obviously vk+2 62 G � vj implies j 6= k + 1 either. So G 62
fF;A1; B1; : : : ; Ak�1; Bk�1g. Also R(G; vj) 62 B, so necessarily j > k + 2 (using the fact
that B is squeezed). So R(G; vj) 62 fC1; : : : ; Ck�1g. Therefore G 2 B0, R(G; vj) 62 B0, and
G� vj 2 @B0.

Case 4: Suppose G = v1v2v3v4. Then G 2 B, G 2 B0, G� v4 2 @B and G� v4 2 @B0.
It is straightforward to check that all possibilities of facets in F(@B0) have been accounted

for, establishing the correspondence between F(@B) and F(@B0). This analysis implies that
@B is obtained from @B0 by the stellar subdivision of the facet v1vk+1vk+3. Now @B0 is a
squeezed 2-sphere with one fewer vertex than @B, and by the induction hypothesis @B0 is
stacked. Therefore @B is stacked and hence, by induction, squeezed 2-spheres are stacked. 2
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Corollary 3.2 Squeezed 2-spheres are Hamiltonian.

4 Squeezed 3-Spheres are Hamiltonian

In this section we show every squeezed 3-sphere is Hamiltonian by exhibiting an explicit
ordering of its facets. We �rst show that the shelling order of the facets of a squeezed 2-
sphere described in [7] is actually a Hamiltonian path. We then use this and the fact that a
squeezed 4-ball B is a squeezed 3-ball joined to the point 0 to get a path involving the facets
@B containing 0. Then we insert the remaining facets of @B to form a Hamiltonian cycle
for @B.

The shelling order for squeezed (d�1)-spheres in [7] specializes to boundaries of squeezed
3-balls B in the following way. Let F = a1a2a3a4 be a facet of B. (Implicit in this notation
is that F = fa1; a2; a3; a3g where a1 < a2 < a3 < a4.) Suppose F � ak 2 @B.

The only such facets of @B when k is even are 123 = 1234 � 4 and 12a3a4 � 2. The
shelling order for @B begins by ordering these \even" facets lexicographically. In Figure 4
we list the facets of a 3-ball B and the ordering of the facets of @B of the form F �ak where
k is even.

B

1 22 3 41

1 23 4 5
2 3 4 5

1 24 5 6
2 3 5 6

3 4 5 6
1 25 6 7

2 3 6 7
3 4 6 7

1 26 7 8
2 3 7 8

1 27 8 9
2 3 8 9

@B

H1 1 2 3
H2 1 3 4
H3 1 4 5
H4 1 5 6
H5 1 6 7
H6 1 7 8
H7 1 8 9

Figure 4: A squeezed 3-ball B and the ordering of the \even" facets of @B
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The shelling order then continues with the boundary facets of the form F � ak where k
is odd in the following manner. Suppose the facets of B in reverse lexicographic order are
F1; F2; : : : ; Fm. De�ne Gp = fFk; Fk+1; : : : ; F`g to be those facets for which a4 = p. In each of
these groups Gp, �nd the minimum i so that Fi� a3 2 @B is a boundary facet and order the
\odd" facets of @B associated with this group as Fi�a3; Fi+1�a3; : : : ; F`�1�a3; F`�a3; F`�a1.
Let G�

p be this ordered list of these \odd" facets of @B. Note that it is possible that G�

p is
empty (but not if p = n, the number of vertices of B), and that if G�

p has only one facet, it is
F`�a1. Now order all of the \odd" facets of @B by listing them in the order G�

n;G
�

n�1;G
�

n�2; : : :
and so on until G�

n�t = ;. It is a fact that if G�

p = ; then G�

i = ; for all i < p. In Figure 5,
we list the facets of a 3-ball B and the ordering of the facets of @B the form F � ak where
k is odd.

B

1 2 3 4
1 2 4 5

2 3 4 5
1 2 5 6

2 3 5 6
314 4 5 6

1 2 6 7
2 3 6 7

313 4 612 7
1 2 7 8

211 3 7 8
1 2 88 9

210 3 89 9

@B

1 2 3
1 3 4
1 4 5
1 5 6
1 6 7
1 7 8
1 8 9

H8 1 2 9
H9 2 3 9
H10 3 8 9
H11 3 7 8
H12 3 4 7
H13 4 6 7
H14 4 5 6

Figure 5: A squeezed 3-ball B and the ordering of the seven remaining \odd" facets of @B

Proposition 4.1 The above shelling order of squeezed 2-spheres is a Hamiltonian path.

Proof. Let F � ak be a facet of @B where F 2 B. We will show, for each possibility of k
and F , which adjacent facet G� b immediately precedes F � ak in the shelling order.
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Suppose k is even. If F = 1234 and k = 4, then F � a4 = F � 4 is the �rst facet in the
shelling order. If F = 1234 and k = 2, then F � 2 is the second facet in the shelling order,
and is adjacent to F � 4. Otherwise, since k is even, F = 12a3a4, a3 > 3; and k = 2. Let
G = L(F; a4). Now G� 2 is adjacent to F � 2 and it is evident from the shelling order that
G� 2 is the immediate predecessor of F � 2.

Suppose k is odd.
Case I: k = 1. That is, we are considering a facet of the form F �a1. Now either F �a3

is a facet of @B or it is not a facet.
If F �a3 is a facet of @B, then F �a3 and F �a1 are adjacent, and it is evident from the

shelling order that F � a3 is the immediate predecessor of F � a1. Otherwise, F � a3 is not
a facet of @B. Thus G = R(F; a3) 2 B. Now F � a1 2 @B implies that R(F; a1) 62 B, which
implies that R(G; a1) = R(R(F; a3); a1) 62 B since B is squeezed. Thus G�a1 = R(F; a3)�a1
is a facet of @B. Now G� a1 is adjacent to F � a1, and it is evident from the shelling order
that G� a1 is the immediate predecessor of F � a1.

Case II: k = 3. That is, we are considering a facet of @B of the form F � a3 where
F 2 B. Recall that F � a3 a facet of @B implies that R(F; a3) 62 B. Now either F = 12a3a4
or L(F; a2) 2 B (since B is squeezed).

If F = 12a3a4, then R(F; a3) 62 B forces a3 = n � 1 and a4 = n. So F � a3 is the �rst
\odd" facet of @B in the shelling order. Thus F � 2 immediately precedes F � a3 in the
shelling order, and it is also adjacent.

Now suppose L(F; a2) 2 B.
Subcase 1: G = L(F; a2) and G � a3 is a facet of @B. Easily G � a3 is adjacent to

F � a3, and in the shelling order G� a3 is the immediate predecessor of F � a3.
Subcase 2: L(F; a2) � a3 is not a facet of @B. Thus R(L(F; a2); a3) 2 B. Let b be

the smallest element of G, where G = R(L(F; a2); a3). Now G � b is a facet of @B since
R(R(L(F; a2); a3); b) = R(F; a3) 62 B. Also, G � b is adjacent to F � a3, and G � b is the
immediate predecessor of F � a3.

Thus the shelling order is Hamiltonian path. 2
We are now ready to construct Hamiltonian cycles for squeezed 3-spheres.

Theorem 4.2 Squeezed 3-spheres are Hamiltonian.

Proof. Let B be a squeezed 4-ball and @B be the associated squeezed 3-sphere. Now
B = cone(B0; 0) for some squeezed 3-ball B0. The above shelling order for @B0 induces an
ordering of the facets of @B containing 0 that is a Hamiltonian path. The last facet of this
path is a facet of the form F � a1 where

� F 2 B,
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� F = 0a1a2a3a4 where aj = a1 + (j � 1) for j = 2; 3; 4, and

� there does not exist a facet G of the 4-ball satisfying the above two conditions for
which F <RL G (otherwise, F � a1 would not be a facet).

See Figure 6.

0 1 2 3 4
0 1 2 4 5
0 2 3 4 5
0 1 2 5 6
0 2 3 5 6

F 0 3 4 5 6
0 1 2 6 7
0 2 3 6 7
0 3 4 6 7
0 1 2 7 8
0 2 3 7 8
0 1 2 8 9
0 2 3 8 9

Figure 6: The facets of a squeezed 4-ball

Let S0 = fG � ai : G 2 B, G � ai 2 @B and 0 2 G � aig, S1 = fG � 0 : G 2 B and
G �RL Fg, and S2 = fG� 0 : G 2 B and F <RL Gg.

Order the facets in S0 using the reverse of ordering induced by the shelling of @B0.
Note that this ordering begins with the facet F � a1 and ends with the facet 0123. Let
S1 = S14 [ S15 [ : : : [ S1a4 where S1k = fG : G 2 S1 and k = maxGg. Order the facets
within each S1k from lexicographically greatest to lexicographically least if a4 � k is an odd
number and from lexicographically least to lexicographically greatest if a4 � k is an even
number. Concatenate these orderings in the sequence S14; S15; : : : ; S1a4 . This results in a
Hamiltonian path of the facets in S1 that begins with the facet 1234 and ends with the facet
F � 0. Note that in the example of Figure 7 we have S0 consisting of facets F1 through
F14, S1 consisting of facets F15 through F20, S14 consisting of the facet F15, S15 consisting of
facets F16 through F17, S16 consisting of facets F18 through F20, and a4 = 6.
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F1 0 4 5 6
F2 0 4 6 7
F3 0 3 4 7
F4 0 3 7 8
F5 0 3 8 9
F6 0 2 3 9
F7 0 1 2 9
F8 0 1 8 9
F9 0 1 7 8
F10 0 1 6 7
F11 0 1 5 6
F12 0 1 4 5
F13 0 1 3 4
F14 0 1 2 3
F15 1 2 3 4
F16 2 3 4 5
F17 1 2 4 5
F18 1 2 5 6
F19 2 3 5 6
F20 3 4 5 6

Figure 7: Some of the facets of the boundary of the squeezed 4-ball

Now concatenating these paths forms a cycle, H1, of the facets in S0[S1. The remaining
facets, S2, of @B will be \inserted" into H1 carefully maintaining the cycle of facets at each
insertion.

Now S2 consists of facets of the form Q = b1b2b3b4 where 0 < b1 � a1 and a3 < b3.
(Otherwise, Q + 0 �RL F or R(F; a1) 2 B contradicting the de�nition of F .) Let Wi =
fQ = b1b2b3b4 : Q 2 S2 and b3 = a3 + ig. For each odd i, consider Wi and Wi+1. If Wi+1 = ;
then set W 0

i = ;.
Suppose Wi+1 6= ;. Let Pi+1 = max<RLfQ : Q 2 Wi+1g and Pi = L(Pi+1; b4) 2 Wi where

Pi+1 = b1b2b3b4. Let W
0

i =Wi+1 [ fP : P 2 Wi and P �RL Pig. See Figure 8, in which P2 is
F5 � 0 and P1 is F2 � 0.

Listing the elements of Wi\W 0

i from least to greatest in reverse lexicographic order, and
the remainder of the elements of W 0

i from greatest to least in reverse lexicographic order,
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0 1 2 3 4
0 1 2 4 5
0 2 3 4 5
0 1 2 5 6
0 2 3 5 6

F 0 3 4 5 6
F1 0 1 2 6 7
F2 0 2 3 6 7
F3 0 3 4 6 7
F4 0 1 2 7 8
F5 0 2 3 7 8
F6 0 1 2 8 9
F7 0 2 3 8 9

Figure 8: The 4-ball: V1 = fF1; F2; F3g and V2 = V1+1 = fF4; F5g.

we have W 0

i = f12bb3; 23bb3; : : : ; b1b2bb3 = Pi; b1b2b3b4 = Pi+1; L(Pi+1; b2); : : : ; 12b3b4g, where
b = b3� 1 = `(Pi+1; b4). Note that the above ordering is a Hamiltonian path of the facets in
W 0

i .
Now 012bb3 and 012b3b4 2 B and hence 01bb3 and 01b3b4 2 S0. Also 01bb3 is adjacent to

01b3b4 in H1. Insert W
0

i in the above order between 01bb3 and 01b3b4 in H1. Do this for each
i for which W 0

i 6= ; to form a Hamiltonian cycle, H2, on the facets in S0 [ S1 [ fP : P 2 W 0

i

for some ig.
Now we must explain what to do with the facets in S2 � [i oddW

0

i . Let P belong to
S2 � [i oddW

0

i . Thus P 2 Wi for some odd i, and Pi <RL P if Wi+1 6= ;. Note that
S2 � [i oddW

0

i contains all of Wi if Wi+1 = ; and i is odd.
Suppose i (odd) is such that Wi+1 6= ;. Let Q1 <RL Q2 <RL � � � <RL Qm be the facets

in Wi such that Pi <RL Qj for all j. For each j, let Gj = 0bj1b
j
2b3b4, where Pi = b1b2b3b4,

and Qj = bj1b
j
2b3b4. Now for each j, Gj � b3 is a facet of @B since Pi+1 = max<RLfQ : Q 2

Wi+1g <RL R(Gj; b3)� 0 and hence R(Gj; b3) 62 B.
Note that for 1 � j � m� 1, Gj � b3 is adjacent to Gj+1 � b3. Also Gm � bm1 is adjacent

to Gm � b3 in H2. For each odd j < m insert Gj � 0 and Gj+1 � 0 between Gj � b3 and
Gj+1� b3 in H2. Observe that Gj � 0 is adjacent to Gj+1� 0 since Gj = L(Gj+1; b

j+1
2 ). If m

is odd, place Gm � 0 between Gm � bm1 and Gm � b3. Do this for each i for which Wi+1 6= ;.
Finally, for the possibly one i for which Wi 6= ; and Wi+1 = ;, let Wi = fQ1; : : : ; Qmg
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with Q1 <RL � � � <RL Qm and let Gj = 0bj1b
j
2b3b4 where Qj = bj1b

j
2b3b4. For each j, Gj � b3 is

a facet of @B since Wi+1 = ;. We can see that for 1 � j � m�1, we have Gj�b3 is adjacent
to Gj+1 � b3 and Gm � bm1 is adjacent to Gm � b3 in H2. Now for each odd j < m insert
Gj � 0 and Gj+1 � 0 between Gj � b3 and Gj+1 � b3 in H2. Note that Gj � 0 is adjacent to
Gj+1� 0 since Gj = L(Gj+1; b

j+1
2 ). If m is odd, place Gm� 0 between Gm� bm1 and Gm� b3.

Doing all this creates a Hamiltonian cycle H of the facets of the squeezed sphere @B. 2
Figure 9 depicts the Hamiltonian cycle of Theorem 4.2 of the boundary facets of the

4-ball in Figure 6.

5 Remarks

As mentioned at the beginning, the fact that the set of squeezed 3-spheres contains at least
one polytopal representative for each simplicial f -vector implies that the f -vector cannot
be the sole obstacle for a simple 4-polytope to be Hamiltonian. It would be nice to know
whether the higher dimensional squeezed spheres are Hamiltonian as well. Despite the
perhaps annoyingly specialized arguments developed to tackle this particular class of objects,
squeezed spheres provide a fertile ground for testing or extending properties of simplicial
polytopes and exploring the boundary between polytopal and non-polytopal spheres.
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0 4 5 6
0 4 6 7

F3 � 0 3 4 6 7
0 3 4 7
0 3 7 8
0 3 8 9
0 2 3 9

F7 � 0 2 3 8 9
F6 � 0 1 2 8 9

0 1 2 9
0 1 8 9
0 1 7 8

F5 � 0 1 2 7 8
F4 � 0 2 3 7 8
F2 � 0 2 3 6 7
F1 � 0 1 2 6 7

0 1 6 7
0 1 5 6
0 1 4 5
0 1 3 4
0 1 2 3

1 2 3 4
2 3 4 5

1 2 4 5
1 2 5 6

2 3 5 6
3 4 5 6

Figure 9: A Hamiltonian cycle of the facets of the boundary of the squeezed 4-ball
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