MA/CS415 Homework \#4

Due Wednesday, September 22

1. Read and study pages 30-51.
2. Page 25, \#2, 3, 4 .
3. Let G be a simple graph. Assume $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ is a path of shortest length from v_{1} to v_{k}. Prove that $v_{1}, v_{2}, \ldots, v_{k-1}$ is a path of shortest length from v_{1} to v_{k-1}. While solving this problem, be careful to remember that a walk may not necessarily be a path.
4. Let G be a simple graph. Suppose every edge e of G is assigned a nonnegative cost $c(e)$. Define the cost of any walk to be the sum of the costs of its edges.
(a) Assume that $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ is a walk of minimum cost from v_{1} to v_{k}. Prove that there exists a path from v_{1} to v_{k} having the same cost. Hint: Think about removing closed walks.
(b) Assume that $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k}$ is a path of minimum cost from v_{1} to v_{k}. Prove that $v_{1}, v_{2}, \ldots, v_{k-1}$ is a path of minimum cost from v_{1} to v_{k-1}. Again, while solving this problem, be careful to remember that a walk may not necessarily be a path.
