MA/CS415 Homework \#5

Due Wednesday, September 29

1. Continue reading and studying pages $30-51$.
2. Page 33, \#1.
3. Page $37, \# 6,10$.
4. Page 42, \#5.
5. Let G be a simple graph with vertices $\{1, \ldots, n\}$. Suppose every edge e of G is assigned a nonnegative cost $c(e)$. Define the cost of any walk to be the sum of the costs of its edges. Define the matrix C with entries

$$
C_{i j}= \begin{cases}0 & \text { if } i=j, \\ c(e) & \text { if } i \neq j, e=\{i, j\} \in E(G), \\ +\infty & \text { if } i \neq j,\{i, j\} \notin E(G) .\end{cases}
$$

Let $C^{(k)}$ be the matrix obtained by raising C to the k power using weird matrix multiplication. Prove that the $i j$ entry of $C^{(k)}$ is the cost of a minimum cost walk from i to j using at most k edges. Suggestion: Refer to the previous homework, and also take into account the effect of the zeroes down the main diagonal.

