Due Wednesday, October 27

1. There is a polyhedron with the property that every face is a regular pentagon, square, or triangle, and the sequence of faces meeting at each vertex is triangle-square-pentagonsquare $(3,4,5,4)$. Use the method developed in class to determine the number of faces, the number of edges, and the number of polygons of each type.
2. Explain why there cannot be a polyhedron with the property that every face is a square, pentagon, or hexagon, and the sequence of faces meeting at each vertex is square-pentagon-hexagon $(4,5,6)$.
3. Let P be a polyhedron with V vertices, E edges, and F faces.
(a) Prove that $F \leq 2 V-4$.
(b) Prove that $V \leq 2 F-4$.
(c) Make a coordinate system with one axis for V and the other for F. Carefully sketch the above two inequalities, and mark the integer ordered pairs (V, F) that satisfy both inequalities. (GeoGebra is nice for this-choose View Grid and type in equations in the input line at the bottom.)
(d) Make sketches of polyhedra for the following (V, F) points:
i. $(4,4)$
ii. $(5,5)$
iii. $(5,6)$
iv. $(6,5)$
v. $(6,6)$
vi. $(6,7)$
vii. $(7,6)$
