Exam 2

Solutions

Multiple Choice Questions

1. The graph of $y=x^{2}$ is shifted up 9 and to the left 1 . Write the resulting function.

Solution: $y=(x+1)^{2}+9$
2. Determine whether the number -7 is a zero of $f(x)=x^{3}+4 x^{2}-49 x-196$. If it is, find the other real zeros.

Solution: $f(-7)=(-7)^{3}+4(-7)^{2}-49(-7)-196=0$ so $x=-7$ is a root. Dividing $f(x)$ by $x+7$, we get $f(x)=(x+7)\left(x^{2}-3 x-28\right)=(x+7)(x-7)(x+4) .-7$ is a zero and the other zeroes are -4 and 7 .
3. For the rational function $f(x)=\frac{-4 x^{2}+18 x+16}{x^{2}+8 x+7}$, find all vertical and horizontal asymptotes.

Solution:

$$
f(x)=\frac{-4 x^{2}+18 x+16}{x^{2}+8 x+7}=\frac{-4 x^{2}+18 x+16}{(x+1)(x+7)}
$$

and $\lim _{x \rightarrow \infty} f(x)=-4$ so the vertical asymptotes are $x=-1$ and $x=-7$ and the horizontal asymptote is $y=-4$.
4. The quadratic function $f(x)=0.0042 x^{2}-0.42 x+36.05$ models the median, or average, age, y, at which U.S. men were first married x years after 1900. In which year was this average age at a minimum? (Round to the nearest year.) What was the average age at first marriage for that year? (Round to the nearest tenth.)

Solution: Plot the function and we find the minimum occurs closest to 1950 and $f(50)=25.55 \approx 25.6$.
5. Solve the following inequality:

$$
\frac{x^{2}(x-11)(x+1)}{(x-4)(x+9)} \geq 0
$$

Solution: $\frac{x^{2}(x-11)(x+1)}{(x-4)(x+9)} \geq 0$, so the places at which we have to divide the real line are $0,11,-1,4$, and -9 .

	$x<-9$	$-9<x<-1$	$-1<x<0$	$0<x<4$	$4<x<11$	$11<x$
$x+9$	-	+	+	+	+	+
$x+1$	-	-	+	+	+	+
x^{2}	+	+	+	+	+	+
$x-4$	-	-	-	-	+	+
$x-11$	-	-	-	-	-	+
Quotient	+	-	+	+	-	+

The function is positive for $x<-9,-1<x<0,0<x<4$ and $x>11$. We may not include $x=-9$ as this is a vertical asymptote. We include $x=-1, x=0$ and $x=11$ but must exclude $x=4$. Thus, the inequality is greater than or equal to zero on $(-\infty,-9) \cup[-1,4) \cup[11, \infty)$
6. Economists use what is called a Leffer curve to predict the government revenue for tax rates from 0% to 100%. Economists agree that the end points of the curve generate 0 revenue, but disagree on the tax rate that produces the maximum revenue. Suppose an economist produces this rational function $R(x)=10 x(100-x) /(15+x)$, where R is revenue in millions at a tax rate of x percent. What tax rate produces the maximum revenue? What is the maximum revenue?

Solution: Again graph the function to find that the maximum occurs at $x=26.5 \%$. The revenue there is $\$ 469$ million.
7. Which of the following are both factors of $p(x)=x^{4}-10 x^{3}+29 x^{2}-8 x-48$?

Solution: The easiest way to check is to find $p(x)$ for the different values of x. In doing so we get that $p(3)=p(4)=0$ so factors are $x-3, x-4$.
8. Find a polynomial of degree 3 that has zeros of $2,-5$, and 6 , and where the coefficient of x^{2} is 9 .

Solution: The polynomial must look like $p(x)=a(x-2)(x+5)(x-6)=a x^{3}-$ $3 a x^{2}-28 a x+60 a$. We need $-3 a=9$ so $a=-3$ and the polynomial is $-3 x^{3}+9 x^{2}+$ $84 x-180$.
9. Evaluate the expression $(4+9 i)(11-10 i)$ and write the result in the form $a+b i$.

Solution: $(4+9 i)(11-10 i)=\left(44-90 i^{2}\right)+(99-40) i=134+59 i$.
10. Find the inverse function of $f(x)=\frac{x-7}{x-8}$.

Solution:

$$
\begin{aligned}
y & =\frac{x-7}{x-8} \\
y(x-8) & =x-7 \\
x y-8 y & =x-7 \\
x y-x & =8 y-7 \\
x(y-1) & =8 y-7 \\
x & =\frac{8 y-7}{y-1} \\
f^{-1}(x) & =\frac{8 x-7}{x-1}
\end{aligned}
$$

Free Response Questions

11. The average temperature in Denver, CO, in the spring time is given by the function $T(x)=-0.65 x^{2}+14.5 x-26.8$, where T is the temperature in degrees Fahrenheit and x is the time of day in military time and is restricted to $6<x<18$ (sunrise to sunset). What is the temperature at 11 A.M.? What is the temperature at 4 P.M.?

Solution: Evaluate $T(11)$ and $T(16)$.
$T(11)=-0.65(11)^{2}+14.5(11)-26.8=54.05^{\circ} \mathrm{F}$.
$T(16)=-0.65(16)^{2}+14.5(16)-26.8=38.8^{\circ} \mathrm{F}$.
12. Evaluate the expression and write the result in the form $a+b i$.

$$
\frac{(1+4 i)(3-i)}{2+i} .
$$

Solution:

$$
\begin{aligned}
\frac{(1+4 i)(3-i)}{2+i} & =\frac{7+11 i}{2+i} \\
& =\frac{7+11 i}{2+i} \frac{2-i}{2-i} \\
& =\frac{25+15 i}{5} \\
& =5-3 i
\end{aligned}
$$

13. Given that -1 is a zero of the polynomial $f(x)=x^{3}+10 x^{2}+29 x+20$, determine all other zeros and write the polynomial in terms of a product of linear factors.

Solution: Since -1 is a root, then $x+1$ divides the polynomial and

$$
f(x)=(x+1)\left(x^{2}+9 x+20\right)=(x+1)(x+5)(x+4)
$$

14. For the rational function $f(x)=\frac{9 x^{3}+6 x^{2}+2 x-6}{3 x^{2}+4 x+2}$, find the equation of the slant asymptote.

Solution: We need to use long division to divide the denominator into the numerator. In doing so we get

$$
\left.3 x^{2}+4 x+2\right) \begin{array}{r}
3 x-2 \\
\begin{array}{r}
9 x^{3}+6 x^{2}+2 x-6 \\
-9 x^{3}-12 x^{2}-6 x \\
-6 x^{2}-4 x-6 \\
\frac{6 x^{2}+8 x+4}{4 x-2}
\end{array}
\end{array}
$$

So the slant asymptote is $y=3 x-2$.
15. A rare species of insect was discovered in the rain forest of Costa Rica. Environmentalists transplant the insect into a protected area. The population of the insect t months after being transplanted is

$$
P(t)=45\left(\frac{1+0.6 t}{3+0.02 t}\right)
$$

(I) What was the population when $t=0$?

Solution: $P(0)=45\left(\frac{1+0.6 \cdot 0}{3+0.02 \cdot 0}\right)=15$.
(II) What will the population be after 10 years?

Solution: 10 years is 120 months. $P(120)=45\left(\frac{1+0.6 \cdot 120}{3+0.02 \cdot 120}\right)=608.333$.
(III) What is the end behavior of this population?

Solution: As $t \rightarrow \infty, P(t) \rightarrow 45 * \frac{0.6}{0.02}=1350$.
16. Find the intercepts and asymptotes of

$$
R(x)=\frac{3 x(x+2)}{(x-1)(x-6)}
$$

(I) The x-intercept(s) are

Solution: where the function crosses the x-axis which will be when the top is 0 . This occurs at $x=0$ and $x=-2$.
(II) The y-intercept is

Solution: the value of the function at $x=0$ and $R(0)=0$.
(III) The vertical asymptote(s) are

Solution: where the denominator is 0 and these are $x=1$ and $x=6$.
(IV) The horizontal asymptote(s) are

Solution: The horizontal asymptote is the end behavior and since the numerator and denominator have the same degree (2) the horizontal asymptote is $y=3$.
17. Find the formula for a quadratic function with vertex $(1,4)$ and y-intercept $(0,3)$.

Solution: Since the vertex is $(1,4)$, the standard form of the quadratic function is $y=a(x-1)^{2}+4$. We need the y-intercept to be $(0,3)$ and putting $x=0$ and $y=3$ gives us that $a=-1$, so the formula for this quadratic function is $y=-(x-1)^{2}+4$.
18. Given that $f(x)=1+x$ and $g(x)=x^{2}-x$, find
(I) $(f \circ g)(x)$

Solution: $(f \circ g)(x)=f\left(x^{2}-x\right)=1+x^{2}-x$.
(II) $(g \circ f)(x)$

Solution: $(g \circ f)(x)=g(1+x)=(1+x)^{2}-(1+x)\left[=x^{2}+x\right]$.
(III) $(f \circ f)(x)$

Solution: $(f \circ f)(x)=f(1+x)=1+(1+x)[=2+x]$.
(IV) $(g \circ g)(x)$

Solution: $(g \circ g)(x)=g\left(x^{2}-x\right)=\left(x^{2}-x\right)^{2}-\left(x^{2}-x\right)\left[=x^{4}-2 x^{3}+x\right]$.
(V) $g(f(2)+5)$

Solution: $g(f(2)+5)=g((1+2)+5)=g(8)=64-8=56$.
19. The graph is of a polynomial function $f(x)$ of degree 5 whose leading coefficient is 1 . The graph is not drawn to scale. Find the polynomial.

Solution: The polynomial has roots at $x=-3,-2,0.1,2$. Thus a formula for this polynomial is

$$
P(x)=(x+3)(x+2) x(x-1)(x-2)\left[=x^{5}+2 x^{4}-7 x^{3}-8 x^{2}+12 x\right] .
$$

20. The graph of a function f is given. Sketch the graph of the inverse function of f. (Graph segments with closed endpoints only.)

Solution:

End of Test

