Exam 4

Solutions

Multiple Choice Questions

Form A

1. B
2. A
3. D
4. D
5. A
6. E
7. A
8. C
9. B
10. C

Form B

1. B
2. D
3. D
4. B
5. B
6. E
7. B
8. E
9. A
10. D

Form C

1. A
2. A
3. D
4. C
5. A
6. D
7. D
8. C
9. C
10. D

Free Response Questions
11. (5 points) Find all solutions of $\sin 2 x-\cos x=0$ in the interval $[0,2 \pi)$.

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \begin{aligned}
\sin 2 x-\cos x & =0 \\
2 \sin x \cos x-\cos x & =0 \\
\cos x(2 \sin x-1) & =0 \\
x & =\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}
\end{aligned}
\end{aligned}
$$

12. (5 points) Given that the terminal point for angle θ is $(20,-21)$, find (must find at least 5 of 6 for all points, otherwise 1 point each)
(a) $\sin \theta$

Solution: $r=\sqrt{20^{2}+21^{2}}=\sqrt{841}=29$, so $\sin \theta=-\frac{21}{29}$
(b) $\cos \theta$

Solution: $\cos \theta=\frac{20}{29}$
(c) $\tan \theta$

Solution: $\tan \theta=-\frac{21}{20}$
(d) $\cot \theta$

Solution: $\cot \theta=-\frac{20}{21}$
(e) $\sec \theta$

Solution: $\sec \theta=\frac{29}{20}$
(f) $\csc \theta$

Solution: $\csc \theta=-\frac{29}{21}$
13. Solve the triangle $\triangle A B C$ given that $c=30, \angle A=52^{\circ}$ and $\angle B=70^{\circ}$.
(a) (2 points) Find a

Solution: $\frac{c}{\sin C}=\frac{a}{\sin A}$ so $a=c \frac{\sin A}{\sin C}=30 \sin 52^{\circ} \sin 58^{\circ}=27.876$
(b) (2 points) Find b

Solution: $\frac{c}{\sin C}=\frac{b}{\sin B}$ so $b=c \frac{\sin B}{\sin C}=30 \sin 70^{\circ} \sin 58^{\circ}=33.242$
(c) (1 point) Find $\angle C$

Solution: $\angle C=180^{\circ}-\left(52^{\circ}+70^{\circ}\right)=58^{\circ}$.
14. Solve the triangle $\triangle A B C$ given that $b=15, c=18$ and $\angle A=108^{\circ}$.
(a) (3 points) Find a

Solution: Law of Cosines
$a^{2}=b^{2}+c^{2}-2 b c \cos A=225+324-2(15)(18) \cos 108^{\circ}=715.869, a=$ 26.756.
(b) (1 point) Find $\angle B$

Solution: $\frac{\sin B}{b}=\frac{\sin A}{a}$ so $\sin B=\sin A \frac{b}{a}=0.533188$ and $\angle B=32.22^{\circ}$
(c) (1 point) Find $\angle C$

Solution: $\angle C=180^{\circ}-(\angle A+\angle B)=39.7788^{\circ}$
15. A triangular field has sides of length 22,36 , and 44 yards.
(a) (3 points) Find the area.

Solution: By Heron's Formula, $s=\frac{1}{2}(22+36+44)=51$

$$
\begin{aligned}
K & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{51(51-22)(51-36)(51-44)} \\
& =\sqrt{51 \times 29 \times 15 \times 7} \\
& =\sqrt{155295} \\
& =394.075
\end{aligned}
$$

(b) (2 points) Find the largest angle in the triangle.

Solution: The largest angle occurs opposite the largest side so this will be angle opposite 44 . By the Law of Cosines

$$
\cos A=\frac{22^{2}+36^{2}-44^{2}}{2 \times 22 \times 36}=-0.09848
$$

and $\angle A=95.6519$.
16. Let $f(x)=2 x^{2}+a x+18$.
(a) (1 point) If $a=10$ how many solutions are there to the equation $f(x)=0$. Find them if possible.

Solution: The discriminant is $b^{2}-4 a c=a^{2}-144$. If $a=10$ the discriminant is negative and there are no solutions.
(b) (2 points) If $a=12$ how many solutions are there to the equation $f(x)=0$. Find them if possible.

Solution: The discriminant is $b^{2}-4 a c=a^{2}-144$. If $a=12$ the discriminant is zero and there there is exactly one solution which is $-a / 4=-3$.
(c) (2 points) if $a=13$ how many solutions are there to the equation $f(x)=0$. Find them if possible.

Solution: The discriminant is $b^{2}-4 a c=a^{2}-144$. If $a=13$ the discriminant is positive and there are two solutions: $x=\frac{-13 \pm 5}{4}=-2$ or $-\frac{9}{2}$.
17. The arctic lynx population in Northern Canada is given by the function $L(t)=6000+$ $3500 \sin \left(\frac{\pi t}{5}+\frac{9 \pi}{10}\right)$ where the time t is measured in years since the year 2000.
(a) (2 points) What is the largest number of lynx present in the region at any time?

Solution: The largest number of lynx will be 9500.
(b) (3 points) How much time elapses between occurrences of the largest and smallest lynx population?

Solution: This is half of the period. The period is $\frac{2 \pi}{\pi / 5}=10$. Thus, there are 5 years between the largest and smallest populations.
18. The motion of a projectile that is fired with an initial velocity of v_{0} at an angle θ to the horizon at a height of h_{0} above the ground is described by the parametric equations

$$
\begin{aligned}
& x(t)=\left(v_{0} \cos \theta\right) t \\
& y(t)=-16 t^{2}+\left(v_{0} \sin \theta\right) t+h_{0}
\end{aligned}
$$

(a) Baseball A is hit with an initial velocity of 98 feet per second at an angle of 35° at a height of 3.5 feet.

$$
\begin{aligned}
& x(t)=\left(98 \cos 35^{\circ}\right) t \\
& y(t)=-16 t^{2}+\left(98 \sin 35^{\circ}\right) t+3.5
\end{aligned}
$$

i. (1 point) How long until the ball hits the ground?

Solution: We must solve $y(t)=0$ which is a simple quadratic equation. It's solutions are $t=-0.0611998$ and $t=3.57436$. The first value is not useful. Thus the ball hits the ground after 3.57436 seconds.
ii. (1 point) How far did it travel?

Solution: We need to find $x(3.57436)=286.939$ feet.
(b) Baseball B is hit with an initial velocity of 118 feet per second at an angle of 30° at a height of 3 feet.

$$
\begin{aligned}
& x(t)=\left(118 \cos 30^{\circ}\right) t \\
& y(t)=-16 t^{2}+\left(118 \sin 30^{\circ}\right) t+3
\end{aligned}
$$

i. (1 point) How long until the ball hits the ground?

Solution: We must solve $-16 t^{2}+\left(118 \sin 30^{\circ}\right) t+3=0$. By the quadratic formula, we get that $t=-0.050165$ and $t=3.73767$. The ball hits the ground in 3.73767 seconds.
ii. (1 point) How far did it travel?

Solution: We must find $x(3.73767)=381.956$ feet.
(c) (1 point) Which ball traveled farther?

Solution: Ball B travels farther.
19. Given that $\cos A=\frac{60}{61}$ and $\sin B=\frac{8}{17}$, find:
(a) (1 point) $\sin A$

Solution: $\sin ^{2} A=1-\cos ^{2} A=1-\left(\frac{60}{61}\right)^{2}=\frac{121}{3721}$. Thus $\sin A=\frac{11}{61}$.
(b) (1 point) $\cos B$

Solution: $\cos ^{2} B=1-\sin ^{2} B=1-\left(\frac{8}{17}\right)^{2}=\frac{225}{289}$. Thus $\cos B=\frac{15}{17}$.
(c) (1 point) $\sin (A+B)$

Solution:

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
& =\left(\frac{11}{61}\right)\left(\frac{15}{17}\right)+\left(\frac{60}{61}\right)\left(\frac{8}{17}\right) \\
& =\frac{645}{1037} \approx 0.62199 .
\end{aligned}
$$

(d) (1 point) $\cos (A+B)$

Solution:

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
& =\left(\frac{60}{61}\right)\left(\frac{15}{17}\right)-\left(\frac{11}{61}\right)\left(\frac{8}{17}\right) \\
& =\frac{812}{1037} \approx 0.78303 .
\end{aligned}
$$

(e) (1 point) $\sin 2 A$

Solution: $\sin 2 A=2 \sin A \cos A=2\left(\frac{11}{61}\right)\left(\frac{60}{61}\right)=\frac{1320}{3721} \approx 0.35474$
20. Plot the following points in the attached grid. Label each point with the appropriate letter.
(a) (1 point) the point with polar coordinates $\left(2, \frac{5 \pi}{12}\right)$
(b) (1 point) the point with polar coordinates $\left(-4, \frac{7 \pi}{4}\right)$
(c) (1 point) the point with polar coordinates $\left(1, \frac{\pi}{2}\right)$
(d) (1 point) the point with rectangular coordinates $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$
(e) (1 point) the point with rectangular coordinates $(-2,0)$.

End OF Test

