2 Solving Equations Worksheet

Concepts:

- Number Lines
- The Definitions of Absolute Value
- Absolute Value Equations and Inequalities
- Solving Equations with One Variable Type The Algebraic Approach
- Solving Equations with a Variable in the Denominator The Algebraic Approach
- Solving Power Equations The Algebraic Approach
- Solving Quadratic Equations The Algebraic Approach
 - The Zero Product Property
 - The Quadratic Formula
 - Completing the Square
- Solving Quadratic Type Equations

(Sections 1.1-1.2)

1. Which of the following numbers is included in the graph?

< -10	-5	● 0	++ 0 5	$\downarrow \rightarrow 10$	
(a) −5	(1	(-2)	(c) 0	(d) 5	(e) 8

2. Which of the following numbers are included in the interval $(-\infty, 7) \cup [20, 35)$?

(a) -2,000,000(e) 7.00000001(b) 0(f) 15(c) 6.99999(g) 19.999999(d) 7(h) 20

(i)	20.00000001	(m)	35.00000001
(j)	24	(n)	2,000,000
(k)	34.99999		
(1)	35		

3. Sketch the graph of $(-\infty, 7) \cup [20, 35)$.

4. Complete the definition of |x - 6|.

5. Complete the definition of |6 - x|.

$$|6 - x| = \begin{cases} & \text{if } x < \\ & \text{if } x \ge \\ & & \text{if } x \ge \\ \end{cases}$$

- 6. Find the exact value of $|\pi 6|$. Your answer may not include absolute value symbols.
- - (a) Write a distance sentence that corresponds to this number line.
 - (b) Write an algebraic equation or inequality that corresponds to this number line.
- 8. Solve each equation or inequality algebraically. As you solve the equation or inequality, discuss the geometry (i.e., the number line) behind each step.
 - (a) |x-3| = 4
 - (b) |x+5| > 2
 - (c) $|4 x| \le 6$
- 9. Three pairs of equations are listed below. For each pair, determine if the two equations are equivalent.

(a)	x + 5 = 2 and $2x + 10$	=4	
	CIRCLE ONE:	EQUIVALENT	NOT EQUIVALENT
(b)	$x = 2$ and $x^2 = 4$		
	CIRCLE ONE:	EQUIVALENT	NOT EQUIVALENT
(c)	$\frac{1}{x} = 5$ and $1 = 5x$		
	CIRCLE ONE:	EQUIVALENT	NOT EQUIVALENT

- 10. Multiplying both sides of an equation by $x^2 + 1$ (always/sometimes/never) produces an equivalent equation.
- 11. Multiplying both sides of an equation by |x| (always/sometimes/never) produces an equivalent equation.

- 12. Solve. (Describe the steps that are being applied to the variable. Think about how you will undo these to solve the equation.)
 - (a) $4(x-2)^2 3 = 0$ (b) $4(x-2)^2 + 3 = 0$ (c) $4(x-2)^2 - 3 = 4x^2$ (d) $\frac{8-2s}{5} = 13$ (e) $-5[14 - (3x+1)^3] = 11$

13. Solve for r.

 $C = 2\pi r$

14. Solve for h.

$$V = \frac{\pi d^2 h}{4}$$

15. Solve for d.

$$V = \frac{\pi d^2 h}{4}$$

This is the formula for the volume of a cylinder. Does this simplify your solution?

16. Solve.

(a)
$$\frac{x}{x+2} = \frac{1}{x-5}$$

(b) $\frac{3y^2 - 2y + 14}{y^2 + y - 2} = \frac{5}{y-1}$
(c) $\frac{x}{x+2} = \frac{5}{x} + 1$

17. How many solutions does each equation have?

(I)
$$x^3 + 5 = 0$$
 (II) $x^4 = -4$

Possibilities:

- (a) Equation (I) has 3 solutions, and equation (II) has no solutions.
- (b) Equation (I) has 3 solutions, and equation (II) has 1 solution.
- (c) Equation (I) has 1 solution, and equation (II) has 2 solutions.
- (d) Equation (I) has no solutions, and equation (II) has 2 solutions.
- (e) Equation (I) has 1 solution, and equation (II) has no solutions.

18. Solve each equation or inequality or algebraically.

- (a) 3|4x+1| = 5
- (b) 3|4 x| + 6 = 2
- (c) $2|x-1| + 4 \le 8$
- (d) |5x+7| + 4 > 10
- (e) |5x+7|+4>1
- 19. Use the Zero Product Property to solve the quadratic equation.
 - (a) $x^2 14 = 3x + 14$
 - (b) $3x^2 + 16x + 5 = 0$
- 20. Solve the quadratic equation by completing the square.
 - (a) $x^2 2x = 12$
 - (b) $9x^2 = 12x + 1$
- 21. Solve the quadratic equation by a method of your choice.
 - (a) $20x + 35 = 3x^2 + 4x$
 - (b) $7x^2 + x + 1 = 0$
- 22. Find a number k such that the equation has exactly one real solution.

$$x^2 + kx + 25 = 0$$

23. For which values of k does the equation have exactly two real solutions.

$$kx^2 + 8x + 1 = 0$$

24. Solve.

(a) $2x^6 = 9x^3 + 5$ (b) $3x^8 + x^4 - 10 = 0$ (c) $(y-2)^2 + 5(y-2) = 3$ 25. We have studied the following techniques for solving equations in class: unwrapping a variable, multiplying by a common denominator, taking roots of both sides of an equation, using the zero product property, completing the square, simplifying, using the quadratic formula, using geometry, and substituting in a quadratic type equation.

For each of the following equations, determine which technique you could use to solve the equation. There may be more than one or zero techniques.

(a)
$$3 - x + 2x^2 = 5 + x$$

- (b) $3x^5 7 = 2$
- (c) $x^5 + 3\sqrt{x} = 7$
- (d) $\frac{5}{x+2} \frac{5+x}{2x} = \frac{7x}{x+2}$ (e) -4x + 3[5(x+7) - 3x + 2] = 7(x+5)(f) $\frac{1}{x+2} = 5x$ (g) $x^4 + 2x^2 - 1 = 0$ (h) $x^4 + 2x - 1 = 0$

On homework, quizzes, and exams, you will not be told which technique you should use. You should practice identifying techniques that can help you solve a problem.