6 Functions and Functional Notation

Concepts:

- The Definition of A Function
- Function Notation
- Piecewise-defined Functions
 - Evaluating Piecewise-defined Functions
 - Sketching the Graph of a Piecewise-defined Functions
- The Domain of a Function

(Sections 3.1-3.2)

- 1. The amount of postage required to mail a first-class letter is determined by its weight. In this situation, is weight a function of postage? Or vice versa? Or both?
- 2. An epidemiological study of the spread of malaria in a rural area finds that the total number P of people who contracted malaria t days into an outbreak is modeled by the function

$$P(t) = -\frac{1}{4}t^2 + 7t + 180, \qquad 1 \le t \le 14.$$

- (a) How many people have contracted malaria 14 days into the outbreak?
- (b) How many people have contracted malaria 6 days into the outbreak?
- 3. In the following identify the independent variable (input) and the dependent variable (output).
 - (a) The amount of property tax you owe is a function of the assessed value of your home in dollars.
 - (b) The length of your fingernails is a function of the amount of time that has passed since your last manicure.
 - (c) The cost of mailing a letter is a function of the weight of the package in ounces.
 - (d) The amount of water required for your lawn (in gallons) is a function of the temperature (in degrees).
 - (e) A person's blood alcohol level is a function of the number of alcoholic drinks consumed in a 2-hour period.

4. The number of recreational visits to the National Parks of the United States is displayed in the table. The number of visits to the national parks, *p*, is a function of the year, *t*.

Year	Recreational Visits to US			
	National Parks			
	(millions of people)			
1990	258.7			
1995	269.6			
1999	287.1			
2000	285.9			
2001	279.9			
2002	277.3			
2003	266.1			
2004	276.4			
Source: www.census.gov				

(a) Solve p(t) = 277.3 for *t* and explain the meaning of the solution.

- (b) Evaluate p(2000) and write a sentence explaining what the numerical value you find means in its real-world context.
- (c) Estimate p(2010) and discuss the accuracy of your prediction.
- (d) Estimate the solution to p(t) = 300 and discuss the accuracy of your approximation.
- 5. Evaluate the given function at the given values:

(a)
$$f(x) = x^3 + 2x$$
; $f(-2)$, $f(-1)$, $f(0)$, $f(\frac{1}{2})$
(b) $g(t) = \frac{t+2}{t-2}$; $g(-2)$, $g(2)$, $g(0)$, $g(a)$, $g(a^2-2)$, $g(a+1)$
(c) $h(u) = 2|u-1|$; $h(-2)$, $h(0)$, $g(\frac{1}{2})$, $h(2)$, $h(x+1)$, $h(x^2+2)$
(d) $f(x) = \frac{|x|}{x}$; $f(-2)$, $f(-1)$, $f(0)$, $f(5)$, $f(w^2)$, $f(\frac{1}{w})$

6. Evaluate the given piecewise defined function at the given values:

(a)
$$f(x) = \begin{cases} x^2 & \text{if } x < 0 \\ x+1 & \text{if } x \ge 0 \end{cases}; f(-2), f(-1), f(0), f(1), f(2)$$

(b)
$$g(u) == \begin{cases} u^2 + 2u & \text{if } u \le -1 \\ u & \text{if } -1 < u \le 1; g(-4), g(-\frac{3}{2}), f(-1), f(0), f(25) \\ -1 & \text{if } u > 1 \end{cases}$$

7. According to http://revenue.ky.gov/, the tax brackets for the 2015 Kentucky state taxes are described below.

more than	but not more than	then your tax is	plus:
\$0	\$3,000	2.00% of your taxable income	\$0
\$3,001	\$4,000	3.00% of the amount over \$3,000	\$60
\$4,001	\$5,000	4.00% of the amount over \$4,000	\$90
\$5,001	\$8,000	5.00% of the amount over \$5,000	\$130
\$8,001	\$75,000	5.80% of the amount over \$8,000	\$280
\$75,001		6.00% of the amount over \$75,000	\$4,160

If your taxable income on Form 740, line 11 is:

They give the following example.

Taxable income 6,800. Tax = (6,800-5,000) × .05(5%) + 130 = 220.

Use this tax table to write a piecewise-defined function KYTax(I) where *I* is the adjusted gross income on Form 740 line 11 of the Kentucky tax form 740, and KYTax(I) is the amount of tax owed by a resident of Kentucky.

8. Let
$$f(x) = x^2 + 1$$
.

- (a) What is f(a+b)?
- (b) What is f(x-1)?
- 9. Let g(x) = x² + x.
 (a) What is g(2x)/2g(x)?
 (b) What is g(x²)?
 (c) What is (g(x))²?

(d) What is
$$\frac{g(x+h) - g(x)}{h}$$
?

10. Let

$$h(x) = \begin{cases} 10 & \text{if } x < -4\\ x^2 + 10 & \text{if } -4 \le x \le 6\\ x + 15 & \text{if } x > 6 \end{cases}$$

- (a) Find *h*(5).
- (b) Find h(-4).
- (c) Find h(-6).
- (d) Find h(6).
- (e) Find *h*(10).

11. Find the domain of each of the following functions. Write the domain in interval notation.

(a)
$$a(x) = x^5 + 2x^2 - 6$$

(b) $b(x) = \frac{x+1}{x-5} + \frac{x+4}{2x+1}$
(c) $c(x) = \sqrt[3]{x+7}$
(d) $d(x) = \sqrt{x+7}$
(e) $e(x) = \frac{1}{\sqrt[3]{10-x}}$
(f) $f(x) = \frac{1}{\sqrt[4]{10-x}}$
(g) $g(x) = \sqrt{x+7} - \frac{1}{x^2-5}$
(h) $h(x) = \begin{cases} \frac{1}{x} & \text{if } x \le -2\\ \frac{1}{x+3} & \text{if } x > -2 \end{cases}$

- 12. To graph the function f we plot the points $(x, __)$ in a coordinate plane. To graph $f(x) = x^2 2$, we plot the points $(x, __)$. So the point $(3, __)$ is on the graph of f. The height of the graph of f above the *x*-axis when x = 3 is $__$.
- 13. Sketch graphs of the following functions:

(a)
$$f(x) = |x| + x$$

(b) $g(x) = |x| - x$
(c) $h(x) = x|x|$
(d) $f(x) = x/|x|$
(e) $g(x) = x - [|x|]$
(f) $h(x) = x[|x|]$
(g) $f(x) = \begin{cases} -1 & \text{if } x < -1 \\ x & \text{if } -1 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$