13 Complex Numbers

Concepts:

- The imaginary number i.
- Complex numbers.
- Complex arithmetic.
- Solutions to quadratic equations.
- Applications.

(Section 4.7)

1. Answer as TRUE or FALSE.

- (a) _____ The only solution to the equation $x^2 = -1$ is *i*.
- (b) _____ $\sqrt{-4} = -2i.$
- (c) _____ $i^2 = -1.$
- (d) _____ $\sqrt{4+9i} = 2+3i.$
- (e) _____ Any real number c can be expressed in standard complex form.
- 2. Write each expression in terms of a real number and i.
 - (a) $\sqrt{-49}$
 - (b) $\sqrt{-\pi}$
 - (c) $\sqrt{-5}$
- 3. Perform the indicated operation and write in standard complex form.

- 4. Solve each equation by using the quadratic formula and express answer in standard complex form.
 - (a) $x^2 = -3$
 - (b) $3x^2 2x = -5$ (c) $x^2 - 4x - 6 = 0$
 - (d) $x^2 + 5x 6 = 0$
 - (e) $x^2 + 5x + 6 = 0$
 - (f) $x^2 + 4 = 0$
 - (g) $3x^2 2x = -5$
- 5. Given the quadratic equation $2x^2 + x + 3 = 0$.
 - (a) Find the two solutions to the equation.

- (b) Add the two solutions together. What can you say about the result. Is this true for solutions to any quadratic?
- 6. Find the complete factorization into linear terms for each of the following
 - (a) $f(x) = x^4 16$
 - (b) $f(x) = x^7 7x^6 + 19x^5 43x^4 + 74x^3 68x^2 + 56x 32$ (Hint: 1, 2, and 4 are roots.)
 - (c) $g(x) = x^3 1$
 - (d) $h(x0 = x^3 + 1)$
- 7. Find a polynomial that has roots 1, 3, -7, 2i and -2i. Do not leave it in factored form.