15 Logarithmic Functions

Concepts:

- Logarithms
- Logarithms as Functions
- Logarithms as Exponent Pickers
- Inverse Relationship between Logarithmic and Exponential Functions.
- The Common Logarithm
* Definition and Graphs
* Exponential Notation vs. Logarithmic Notation
* Evaluating Common Logarithms
- The Natural Logarithm
* Definition and Graphs
* Exponential Notation vs. Logarithmic Notation
* Evaluating Common Logarithms
- Logarithms with Different Bases
* Definition and Graphs
* Exponential Notation vs. Logarithmic Notation
* Evaluating Different Base Logarithms
(Section 5.3)

1. Find the exact value of the following logarithms. Do NOT use your calculator.
(a) $\log _{3}(27)$
(b) $\log (\sqrt[3]{100})$
(d) $\ln \left(\frac{1}{\sqrt[5]{e^{3}}}\right)$
(c) $\log _{5}\left(\frac{1}{625}\right)$
(e) $10^{\log (53)}$
(f) $e^{2 \ln (x)}$
2. Using your knowledge of exponents, estimate between which two integer values the following expressions will be. Use your calculator to find approximate values for each. Was your estimation accurate?
(a) $\log (1008)$
(c) $\ln (7)$
(b) $\ln (3)$
(d) $\log (53)$
3. Convert each exponential statement to an equivalent logarithmic statement.
(a) $8^{2}=64$
(c) $3^{4}=y$
(b) $2^{x}=16$
(d) $x^{-5}=\left(\frac{1}{32}\right)$
4. Convert each logarithmic statement to an equivalent exponential statement.
(a) $\log _{2}(32)=5$
(c) $\log (9)=x$
(b) $\ln (x)=3$
(d) $\log _{x}\left(\frac{1}{64}\right)=-3$
5. Find all real solutions or state that there are none. Your answers should be exact.
(a) $\ln (x)=2$
(b) $10^{x+2}=376$
(c) $9 e^{x-8}=2$
(d) $\log _{8}(x-5)-\log _{8}(2 x+2)=0$
6. Find the approximate solutions. (HINT: Try using a graphing approach.)
(a) $\ln (x)=x-5$
(b) $\log _{5}(6)=x$
(c) $\log _{2}(21)=x$
7. Let $f(x)=\ln (3 x+7)$. Find $f^{-1}(x)$.
8. Let $f(x)=2^{5 x+3}-1$. Find $f^{-1}(x)$.
9. Find the domain of $f(x)=\ln (2-3 x)$
10. Find the domain of $g(x)=\frac{x}{\ln (5 x+4)}$
11. Find the domain of $h(x)=\ln \left(x^{2}-2 x-15\right)$
12. List the transformations that will change the graph of $f(x)=\ln (x)$ into the graph of the given function.
(a) $g(x)=3 \ln (x)$
(b) $h(x)=\ln (x)-5$
(c) $k(x)=\ln (x-3)$
(d) $l(x)=\ln (x+2)-7$
13. Sketch the graph of the function.
(a) $f(x)=\log (x+4)$
(b) $g(x)=2 \log (x)-5$
14. (Question \# 75 from Hungerford 5.3 exercises) Show that $g(x)=\ln \left(\frac{x}{1-x}\right)$ is the inverse function of $f(x)=\frac{1}{1+e^{-1}}$
15. (Question \# 77 from Hungerford 5.3 exercises) Suppose $f(x)=A \ln (x)+B$, where A and B are constants. If $f(1)=10$ and $f(e)=1$, what are A and B ?
16. (Question \# 78 from Hungerford 5.3 exercises) $f(x)=A \ln (x)+B$, where A and B are constants. If $f(e)=5$ and $f\left(e^{2}\right)=8$, what are A and B ?
17. (Question \# 49 from Hungerford 5.3 exercises) Do the graphs of $f(x)=\log \left(x^{2}\right)$ and $g(x)=2 \log (x)$ appear to be the same? How do they differ?
18. (Question \# 50 from Hungerford 5.3 exercises) Do the graphs of $h(x)=\log \left(x^{3}\right)$ and $k(x)=3 \log (x)$ appear to be the same? How do they differ?
19. (Question \# 82 from Hungerford 5.3 exercises) Students in a precalculus class were given a final exam. Each month thereafter, they took an equivalent exam. The class average on the exam taken after t months is given by:

$$
F(t)=82-8 \ln (t+1) .
$$

(a) What was the class average after six months?
(b) After a year?
(c) When did the class average drop below 55 ?
20. (Question \# 83 from Hungerford 5.3 exercises) One person with a flu virus visited the campus. The number T of days it took for the virus to infect x people was given by:

$$
T=-.93 \ln \left[\frac{7000-x}{6999 x}\right] .
$$

(a) How many days did it take for 6000 people to become infected?
(b) After two weeks, how many people were infected?
(c) How large was this campus population? (HINT: Think about the domain!)

