18 Angles and Their Measurement

Concepts:

- Angles
 - Initial Side and Terminal Side
 - Standard Position
 - Coterminal Angles
- Measuring Angles
 - Radian Measure vs. Degree Measure
 - Radian Measure as a Distance on the Unit Circle
 - Converting between Radian Measure and Degree Measure
 - Finding the Quadrant Associated with the Terminal Side of an Angle
- Identifying the Point on the Unit Circle that Corresponds to an Angle in Standard Position

(**Sections 6.1**)

- 1. Find the radian measure of each of the following:
 - (a) 450° angle
 - (b) -50° angle
- 2. Show which of the following points must lie on the unit circle.
 - (a) (0, -1)
 - (b) (1, -1)
 - (c) $\left(\frac{3}{5}, -\frac{4}{5}\right)$
 - (d) $(\frac{4}{5}, -\frac{3}{5})$
 - (e) $\left(-\frac{\sqrt{5}}{3}, \frac{2}{3}\right)$
 - (f) $(\frac{\sqrt{3}}{2}, \frac{1}{2})$
 - (g) $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}\right)$
 - (h) $(\frac{1}{2}, -\frac{\sqrt{3}}{2})$

3. Suppose that an angle of measure θ radians intersects the unit circle at the point $\begin{pmatrix} \sqrt{2} & \sqrt{2} \end{pmatrix}$

$$\left(-\frac{1}{2},-\frac{1}{2}\right)$$
.

- (a) What is one possibility for θ ?
- (b) How do you find all the other possibilities?
- 4. Suppose that an angle of measure θ radians intersects the unit circle at the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

$$\begin{pmatrix} 2 & 2 \end{pmatrix}$$

- (a) What is one possibility for θ ?
- (b) How do you find all the other possibilities?
- 5. Suppose that an angle of measure θ radians is placed in standard position. Find the location of the terminal side of the angle.

Possibilities: (A) Quadrant I, (B) Quadrant II, (C) Quadrant III, (D) Quadrant VI, (E) the positive x-axis, (F) the negative x-axis, (G) the positive y-axis, or (H) the negative y-axis.

- (a) $\theta = \frac{74\pi}{3}$
- (b) $\theta = -\frac{74\pi}{3}$
- (c) $\theta = 100\pi$
- (d) $\theta = -100\pi$
- (e) $\theta = 21\pi$
- (f) $\theta = -21\pi$
- (g) $\theta = \frac{102\pi}{7}$
- (h) $\theta = -\frac{102\pi}{7}$

6. Find the terminal point on the unit circle determined by the given value of θ .

(a) $\theta = 4\pi$ (b) $\theta = \frac{3\pi}{2}$ (c) $\theta = -\frac{\pi}{6}$ (d) $\theta = \frac{7\pi}{6}$ (e) $\theta = -\frac{7\pi}{4}$ (f) $\theta = \frac{5\pi}{3}$ (g) $\theta = -\frac{4\pi}{3}$ (h) $\theta = \frac{11\pi}{6}$