18 Angles and Their Measurement

Concepts:

- Angles
- Initial Side and Terminal Side
- Standard Position
- Coterminal Angles
- Measuring Angles
- Radian Measure vs. Degree Measure
- Radian Measure as a Distance on the Unit Circle
- Converting between Radian Measure and Degree Measure
- Finding the Quadrant Associated with the Terminal Side of an Angle
- Identifying the Point on the Unit Circle that Corresponds to an Angle in Standard Position

(Sections 6.1)

1. Find the radian measure of each of the following:
(a) 450° angle
(b) -50° angle
2. Show which of the following points must lie on the unit circle.
(a) $(0,-1)$
(b) $(1,-1)$
(c) $\left(\frac{3}{5},-\frac{4}{5}\right)$
(d) $\left(\frac{4}{5},-\frac{3}{5}\right)$
(e) $\left(-\frac{\sqrt{5}}{3}, \frac{2}{3}\right)$
(f) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
(g) $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right)$
(h) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
3. Suppose than an angle of measure θ radians intersects the unit circle at the point $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.
(a) What is one possibility for θ ?
(b) How do you find all the other possibilities?
4. Suppose than an angle of measure θ radians intersects the unit circle at the point $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
(a) What is one possibility for θ ?
(b) How do you find all the other possibilities?
5. Suppose that an angle of measure θ radians is placed in standard position. Find the location of the terminal side of the angle.
Possibilities: (A) Quadrant I, (B) Quadrant II, (C) Quadrant III, (D) Quadrant VI, (E) the positive x-axis, (F) the negative x-axis, (G) the positive y-axis, or (H) the negative y-axis.
(a) $\theta=\frac{74 \pi}{3}$
(b) $\theta=-\frac{74 \pi}{3}$
(c) $\theta=100 \pi$
(d) $\theta=-100 \pi$
(e) $\theta=21 \pi$
(f) $\theta=-21 \pi$
(g) $\theta=\frac{102 \pi}{7}$
(h) $\theta=-\frac{102 \pi}{7}$
6. Find the terminal point on the unit circle determined by the given value of θ.
(a) $\theta=4 \pi$
(b) $\theta=\frac{3 \pi}{2}$
(c) $\theta=-\frac{\pi}{6}$
(d) $\theta=\frac{7 \pi}{6}$
(e) $\theta=-\frac{7 \pi}{4}$
(f) $\theta=\frac{5 \pi}{3}$
(g) $\theta=-\frac{4 \pi}{3}$
(h) $\theta=\frac{11 \pi}{6}$
