Ma 110 Exam 3 Review: Sections 5.4-5.6, 6.1-6.2, 6.4-6.6, 7.1-7.3
 Do not rely solely on this work sheet! Make sure to study homework problems, other work sheets, lecture notes, and the book!!!

1. Section 5.4 (suggested problems from HW23-\#'s 3, 6, 7, 10)
(a) Write as a single $\operatorname{logarithm.~} 2 \log (x-1)+\log \left(x^{2}-1\right)-\log (y-1)$
(b) Simplify. $\quad e^{x \ln (5)}$
(c) Express $\ln \left(\frac{2 z^{3}}{2 x^{4} \sqrt{y}}\right)$ in terms of $\ln (x), \ln (y)$ and $\ln (z)$.
2. Section 5.5 (suggested problems from HW24-\#'s 2, 5, 9, 10)
(a) Solve for x exactly. $\quad \ln (x+5)=3$.
(b) Solve for x exactly. $\quad e^{x^{2}-2 x-3}=1$
(c) Section 5.5, question 37: Solve $\log (3 x-1)+\log (2)=\log (4)+\log (x+2)$
(d) How long until $\$ 10,000$ doubles in a bank account with a yearly interest rate of $r=7 \%$ compounded continuously?
(e) Section 5.5, question 69: The concentration of carbon dioxide in the atmosphere is 364 parts per million (ppm) and is increasing exponentially at a continuous rate of $.4 \%$. How many years will it take for the concentration to reach 500 ppm ?
3. Section 5.6 (suggested problems from HW25 - \#'s 3, 4, 6)
(a) A culture starts with 8600 bacteria. After one hour the count is 10,000 .
i. Find a function that models the number of bacteria after t hours.
ii. Find the number of bacteria after 2 hours.
iii. How long will it take for the number of bacteria to double?
(b) The population of California was $10,586,223$ in 1950 and $23,668,562$ in 1980. Assume the population grows exponentially.
i. Find a function that models the population t years after 1950 .
ii. Find the time required for the population to double.
iii. In what year was the population $1,000,000$?
(c) The half-life of radium- 226 is 1600 years. Suppose we have a $22-\mathrm{mg}$ sample.
i. Find a function that models the mass remaining after t years.
ii. How much of the sample will remain after 4000 years?
iii. After how long will only 18 mg of the sample remain?
4. Section 6.1 (suggested problems from HW26 - \#'s 1, 2, 5, 6, 9)
(a) Find the radian measure of $\mathrm{a}-450^{\circ}$ angle.
(b) What quadrant does the angle with measure $\frac{26 \pi}{3}$ lie in.
(c) Suppose that an angle of measure θ radians intersects the unit circle at the point $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$. Give two possibilities for θ.
5. Section 6.2 (suggested problems from HW27-\#'s 3, 5, 6)
(a) Find the point P on the unit circle corresponding to the angle $\frac{-5 \pi}{6}$.
(b) Evaluate the sin, \cos, and \tan functions at $t=\frac{5 \pi}{2}$.
(c) Evaluate sin, cos, and tan if the terminal ray of an angle contains the point $(\sqrt{5},-7)$.
(d) Approximate $\sin (2.6)$.
6. Section 6.4 (suggested problems from HW28 - \#'s 1, 3, 6, 7)
(a) List the transformations needed to apply to the graph of $y=\sin (x)$ to sketch the graph of $y=3 \sin \left(\frac{x}{\pi}\right)$. Sketch the graph. Be sure that the graph is well-labeled.
(b) List the transformations needed to apply to the graph of $y=\cos (x)$ to sketch the graph of $y=2 \cos \left(x-\frac{\pi}{3}\right)$. Sketch the graph. Be sure that the graph is well-labeled.
(c) The graph of a periodic function is shown below. Find a rule for the function.

7. Section 6.5 (suggested problems from HW29-\#'s 2, 3, 4)
(a) For each state the amplitude, period, phase shift and sketch the graph.
i. $f(x)=2 \cos \left(3 x-\frac{\pi}{2}\right)$
ii. $f(x)=\tan \left(x+\frac{\pi}{4}\right)$
(b) How many solutions for x between 0 and 2π does $\sin (x)=-0.2$ have?
8. Section 6.6 (suggested problems from HW30 - \#'s 2, 5, 6)
(a) Evaluate the six trigonometric functions at $t=-\frac{7 \pi}{3}$.
(b) Evaluate the six trigonometric functions if the terminal ray of an angle contains the point (. $6, .8$).
(c) Answer as True or False.
i. $\cos ^{2}(t)=1+\sin ^{2}(t)$.
ii. $\cos (t-2 \pi)=\cos (t)$.
iii. $\csc (t)=\frac{1}{\sin (t)}$.
iv. $\tan (-t)=\tan (t)$.
(d) Find $\pi<t<2 \pi$ such that $\sec (t)=\sqrt{2}$ exactly.
(e) Find the other five trigonometric functions exactly if $\cos (t)=\frac{1}{3}$ and $\pi<t<2 \pi$.
9. Section 7.1 (suggested problems from HW31-\#'s 4, 8, 9, 10)
(a) Simplify the following:
i. $\tan (x)(\sin (x)+\cot (x) \cos (x))$
ii. $(\cos (\theta)-\sin (\theta))^{2}$
iii. $\frac{\sec (t)}{\sin (t)}-\frac{\sin (t)}{\cos (t)}$
(b) Prove the following:
i. $\csc ^{2}(x)-\cos ^{2}(x) \csc ^{2}(x)=1$
ii. $(\sec (\theta)+1)(\sec (\theta)-1)=\tan ^{2}(\theta)$
iii. $\frac{\cos (\alpha)}{1-\sin (\alpha)}=\sec (\alpha)+\tan (\alpha)$
iv. $\frac{\sin (t)}{1-\cos (t)}+\frac{1-\cos (t)}{\sin (t)}=2 \csc (t)$
v. $\sec ^{4}(x)-\tan ^{4}(x)=\sec ^{2}(x)+\tan ^{2}(x)$
10. Section 7.2 (suggested problems from HW32-\#'s 5, 6, 8, 10)
(a) Find the exact value of each of the following expressions:
i. $\cos \left(\frac{11 \pi}{12}\right)$
ii. $\sin \left(\frac{19 \pi}{12}\right)$
iii. $\tan \left(\frac{17 \pi}{12}\right)$
(b) Write the following expression as a trigonometric function of one number, and find its exact value.

$$
\cos \left(\frac{3 \pi}{7}\right) \cos \left(\frac{2 \pi}{21}\right)+\sin \left(\frac{3 \pi}{7}\right) \sin \left(\frac{2 \pi}{21}\right)
$$

(c) Prove the cofunction identity: $\sin \left(\frac{\pi}{2}-\theta\right)=\cos (\theta)$
(d) Section 7.2, Question 45: If x is in the first and y is in the second quadrant, $\sin (x)=\frac{24}{25}$, and $\sin (y)=\frac{4}{5}$, find the exact value of $\sin (x+y)$ and $\tan (x+y)$ and the quadrant in which $x+y$ lies.
11. Section 7.3 (suggested problems from HW33-\#'s 1, 2, 3, 4)
(a) Find the exact value of each of the following expressions:
i. $\cos \left(\frac{3 \pi}{8}\right)$
ii. $\sin \left(\frac{5 \pi}{8}\right)$
iii. $\tan \left(\frac{7 \pi}{8}\right)$
(b) Given $\tan (t)=-\frac{4}{3}$ and $\frac{\pi}{2}<t<\pi$, find $\sin (2 t), \cos (2 t)$, and $\tan (2 t)$.
(c) Given $\tan (x)=1$ and x is in Quadrant III, find $\sin \left(\frac{x}{2}\right), \cos \left(\frac{x}{2}\right)$, and $\tan \left(\frac{x}{2}\right)$.
(d) Simplify. $\frac{1-\cos (4 \theta)}{\sin (4 \theta)}$

