Ma 110 Exam 3 Review: Sections 5.4-5.6, 6.1-6.2, 6.4-6.6, 7.1-7.3

Do not rely solely on this work sheet! Make sure to study homework problems, other work sheets, lecture notes, and the book!!!

- 1. Section 5.4 (suggested problems from HW23 #'s 3, 6, 7, 10)
 - (a) Write as a single logarithm. $2\log(x-1) + \log(x^2-1) \log(y-1)$
 - (b) Simplify. $e^{x \ln(5)}$

(c) Express
$$\ln\left(\frac{2z^3}{2x^4\sqrt{y}}\right)$$
 in terms of $\ln(x), \ln(y)$ and $\ln(z)$.

- 2. Section 5.5 (suggested problems from HW24 #'s 2, 5, 9, 10)
 - (a) Solve for x exactly. $\ln(x+5) = 3$.
 - (b) Solve for x exactly. $e^{x^2-2x-3} = 1$
 - (c) Section 5.5, question 37: Solve $\log(3x 1) + \log(2) = \log(4) + \log(x + 2)$
 - (d) How long until \$10,000 doubles in a bank account with a yearly interest rate of r = 7% compounded continuously?
 - (e) Section 5.5, question 69: The concentration of carbon dioxide in the atmosphere is 364 parts per million (ppm) and is increasing exponentially at a continuous rate of .4%. How many years will it take for the concentration to reach 500 ppm?
- 3. Section 5.6 (suggested problems from HW25 #'s 3, 4, 6)
 - (a) A culture starts with 8600 bacteria. After one hour the count is 10,000.
 - i. Find a function that models the number of bacteria after t hours.
 - ii. Find the number of bacteria after 2 hours.
 - iii. How long will it take for the number of bacteria to double?
 - (b) The population of California was 10, 586, 223 in 1950 and 23, 668, 562 in 1980. Assume the population grows exponentially.
 - i. Find a function that models the population t years after 1950.
 - ii. Find the time required for the population to double.
 - iii. In what year was the population 1,000,000?
 - (c) The half-life of radium-226 is 1600 years. Suppose we have a 22-mg sample.
 - i. Find a function that models the mass remaining after t years.
 - ii. How much of the sample will remain after 4000 years?
 - iii. After how long will only 18 mg of the sample remain?

- 4. Section 6.1 (suggested problems from HW26 #'s 1, 2, 5, 6, 9)
 - (a) Find the radian measure of a -450° angle.
 - (b) What quadrant does the angle with measure $\frac{26\pi}{3}$ lie in.
 - (c) Suppose that an angle of measure θ radians intersects the unit circle at the point $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$. Give two possibilities for θ .
- 5. Section 6.2 (suggested problems from HW27 #'s 3, 5, 6)
 - (a) Find the point P on the unit circle corresponding to the angle $\frac{-5\pi}{6}$.
 - (b) Evaluate the sin, cos, and tan functions at $t = \frac{5\pi}{2}$.
 - (c) Evaluate sin, cos, and tan if the terminal ray of an angle contains the point $(\sqrt{5}, -7)$.
 - (d) Approximate $\sin(2.6)$.
- 6. Section 6.4 (suggested problems from HW28 #'s 1, 3, 6, 7)
 - (a) List the transformations needed to apply to the graph of $y = \sin(x)$ to sketch the graph of $y = 3\sin\left(\frac{x}{\pi}\right)$. Sketch the graph. Be sure that the graph is well-labeled.
 - (b) List the transformations needed to apply to the graph of $y = \cos(x)$ to sketch the graph of $y = 2\cos\left(x \frac{\pi}{3}\right)$. Sketch the graph. Be sure that the graph is well-labeled.
 - (c) The graph of a periodic function is shown below. Find a rule for the function.

- 7. Section 6.5 (suggested problems from HW29 #'s 2, 3, 4)
 - (a) For each state the amplitude, period, phase shift and sketch the graph.
 - i. $f(x) = 2\cos(3x \frac{\pi}{2})$ ii. $f(x) = \tan(x + \frac{\pi}{4})$
 - (b) How many solutions for x between 0 and 2π does $\sin(x) = -0.2$ have?
- 8. Section 6.6 (suggested problems from HW30 #'s 2, 5, 6)
 - (a) Evaluate the six trigonometric functions at $t = -\frac{7\pi}{3}$.
 - (b) Evaluate the six trigonometric functions if the terminal ray of an angle contains the point (.6, .8).
 - (c) Answer as True or False.
 - i. $\cos^{2}(t) = 1 + \sin^{2}(t)$. ii. $\cos(t - 2\pi) = \cos(t)$. iii. $\csc(t) = \frac{1}{\sin(t)}$. iv. $\tan(-t) = \tan(t)$.
 - (d) Find $\pi < t < 2\pi$ such that $\sec(t) = \sqrt{2}$ exactly.
 - (e) Find the other five trigonometric functions exactly if $\cos(t) = \frac{1}{3}$ and $\pi < t < 2\pi$.
- 9. Section 7.1 (suggested problems from HW31 #'s 4, 8, 9, 10)
 - (a) Simplify the following:

i.
$$\tan(x) \left(\sin(x) + \cot(x) \cos(x) \right)$$

ii. $\left(\cos(\theta) - \sin(\theta) \right)^2$
iii. $\frac{\sec(t)}{\sin(t)} - \frac{\sin(t)}{\cos(t)}$

- (b) Prove the following:
 - i. $\csc^2(x) \cos^2(x) \csc^2(x) = 1$ ii. $(\sec(\theta) + 1)(\sec(\theta) - 1) = \tan^2(\theta)$ iii. $\frac{\cos(\alpha)}{1 - \sin(\alpha)} = \sec(\alpha) + \tan(\alpha)$ iv. $\frac{\sin(t)}{1 - \cos(t)} + \frac{1 - \cos(t)}{\sin(t)} = 2\csc(t)$ v. $\sec^4(x) - \tan^4(x) = \sec^2(x) + \tan^2(x)$

- 10. Section 7.2 (suggested problems from HW32 #'s 5, 6, 8, 10)
 - (a) Find the exact value of each of the following expressions:

i.
$$\cos\left(\frac{11\pi}{12}\right)$$

ii. $\sin\left(\frac{19\pi}{12}\right)$
iii. $\tan\left(\frac{17\pi}{12}\right)$

(b) Write the following expression as a trigonometric function of one number, and find its exact value.

$$\cos\left(\frac{3\pi}{7}\right)\cos\left(\frac{2\pi}{21}\right) + \sin\left(\frac{3\pi}{7}\right)\sin\left(\frac{2\pi}{21}\right)$$

- (c) Prove the cofunction identity: $\sin\left(\frac{\pi}{2} \theta\right) = \cos(\theta)$
- (d) Section 7.2, Question 45: If x is in the first and y is in the second quadrant, $\sin(x) = \frac{24}{25}$, and $\sin(y) = \frac{4}{5}$, find the exact value of $\sin(x+y)$ and $\tan(x+y)$ and the quadrant in which x + y lies.
- 11. Section 7.3 (suggested problems from HW33 #'s 1, 2, 3, 4)
 - (a) Find the exact value of each of the following expressions:

i.
$$\cos\left(\frac{3\pi}{8}\right)$$

ii. $\sin\left(\frac{5\pi}{8}\right)$
iii. $\tan\left(\frac{7\pi}{8}\right)$

- (b) Given $\tan(t) = -\frac{4}{3}$ and $\frac{\pi}{2} < t < \pi$, find $\sin(2t), \cos(2t)$, and $\tan(2t)$.
- (c) Given $\tan(x) = 1$ and x is in Quadrant III, find $\sin\left(\frac{x}{2}\right), \cos\left(\frac{x}{2}\right)$, and $\tan\left(\frac{x}{2}\right)$.

(d) Simplify.
$$\frac{1 - \cos(4\theta)}{\sin(4\theta)}$$