DIRECTIONS: Show all your work clearly on a separate paper. No calculators allowed!

1. Solve the following equations for x.
(a) $a^{2} c+b^{2} x=2$
(d) $x^{2}+6 x+1=0$
(b) $a b x-c=x$
(e) $\frac{x+2}{x-3}-\frac{7}{x+3}=\frac{30}{x^{2}-9}$
(c) $4 x^{2}-13 x+3=0$
(f) $|3 x-4|=8$
2. Solve the inequality $3 x \leq 4(x-2)$. State the answer using set notation and interval notation.
3. Fill in the blanks to complete the square and make the equation true.
(a) $x^{2}+12 x+\ldots=(x+\ldots)^{2}$
(b) $x^{2}-\frac{2}{3} x+\ldots=(x-\ldots)^{2}$
4. Determine the equation following described lines and then sketch their graphs.
(a) Has slope -2 and y-intercept $(0,1)$.
(b) Goes through the points $(-1,-5)$ and $(2,4)$.
(c) Is horizontal and goes through the point $(3,-2)$.
(d) Is parallel to the y-axis and goes through the point $(1,4)$.
5. A triangle with an area of $12 \mathrm{~cm}^{2}$ has a height that is 5 cm more than its base. Compute the height of the triangle.
6. A rectangular parking lot of width w and length l is fenced all around the perimeter. One width of the lot is fenced with cement costing $\$ 28$ per foot, while the other three sides use a chain-link fence costing $\$ 14$ per foot. Determine the formula for the cost of the entire fence.
7. A rectangular box has a square base of side length x and height h, with an open top. Determine the formulas for its volume and surface area.
8. State the circumference and area of circle with radius r.
