Worksheet 14 - The Unit Circle: Sine and Cosine (§6.2)

Exercises 1 - 20, compute the exact value of the cosine and sine of the given angle.

1.
$$\theta = 0$$
 2. $\theta = \frac{\pi}{4}$
 3. $\theta = \frac{\pi}{3}$
 4. $\theta = \frac{\pi}{2}$

 5. $\theta = \frac{2\pi}{3}$
 6. $\theta = \frac{3\pi}{4}$
 7. $\theta = \pi$
 8. $\theta = \frac{7\pi}{6}$

 9. $\theta = \frac{5\pi}{4}$
 10. $\theta = \frac{4\pi}{3}$
 11. $\theta = \frac{3\pi}{2}$
 12. $\theta = \frac{5\pi}{3}$

 13. $\theta = \frac{7\pi}{4}$
 14. $\theta = \frac{23\pi}{6}$
 15. $\theta = -\frac{13\pi}{2}$
 16. $\theta = -\frac{43\pi}{6}$

 17. $\theta = -\frac{3\pi}{4}$
 18. $\theta = -\frac{\pi}{6}$
 19. $\theta = \frac{10\pi}{3}$
 20. $\theta = 117\pi$

In Exercises 21 - 30, compute the requested value.

21. If $\sin(\theta) = -\frac{7}{25}$ with θ in Quadrant IV, what is $\cos(\theta)$? 22. If $\cos(\theta) = \frac{4}{9}$ with θ in Quadrant I, what is $\sin(\theta)$? 23. If $\sin(\theta) = \frac{5}{13}$ with θ in Quadrant II, what is $\cos(\theta)$? 24. If $\cos(\theta) = -\frac{2}{11}$ with θ in Quadrant III, what is $\sin(\theta)$? 25. If $\sin(\theta) = -\frac{2}{3}$ with θ in Quadrant III, what is $\cos(\theta)$? 26. If $\cos(\theta) = \frac{28}{53}$ with θ in Quadrant IV, what is $\sin(\theta)$? 27. If $\sin(\theta) = \frac{2\sqrt{5}}{5}$ and $\frac{\pi}{2} < \theta < \pi$, what is $\cos(\theta)$? 28. If $\cos(\theta) = \frac{\sqrt{10}}{10}$ and $2\pi < \theta < \frac{5\pi}{2}$, what is $\sin(\theta)$? 29. If $\sin(\theta) = -0.42$ and $\pi < \theta < \frac{3\pi}{2}$, what is $\cos(\theta)$? 30. If $\cos(\theta) = -0.98$ and $\frac{\pi}{2} < \theta < \pi$, what is $\sin(\theta)$? In Exercises 31 - 39, compute all of the angles which satisfy the given equation.

31. $\sin(\theta) = \frac{1}{2}$ 32. $\cos(\theta) = -\frac{\sqrt{3}}{2}$ 33. $\sin(\theta) = 0$ 34. $\cos(\theta) = \frac{\sqrt{2}}{2}$ 35. $\sin(\theta) = \frac{\sqrt{3}}{2}$ 36. $\cos(\theta) = -1$ 37. $\sin(\theta) = -1$ 38. $\cos(\theta) = \frac{\sqrt{3}}{2}$ 39. $\cos(\theta) = -1.001$

In Exercises 40 - 48, solve the equation for t.

 40. $\cos(t) = 0$ 41. $\sin(t) = -\frac{\sqrt{2}}{2}$ 42. $\cos(t) = 3$

 43. $\sin(t) = -\frac{1}{2}$ 44. $\cos(t) = \frac{1}{2}$ 45. $\sin(t) = -2$

 46. $\cos(t) = 1$ 47. $\sin(t) = 1$ 48. $\cos(t) = -\frac{\sqrt{2}}{2}$

In Exercises 49 - 54, use a calculator or computer to approximate the given value to three decimal places. Make sure your device is in the proper angle measurement mode!

49. $\sin(78.95^{\circ})$ 50. $\cos(-2.01)$ 51. $\sin(392.994)$ 52. $\cos(207^{\circ})$ 53. $\sin(\pi^{\circ})$ 54. $\cos(e)$

In Exercises 55 - 58, compute the measurement of the missing angle and the lengths of the missing sides.

55. Compute θ , b, and c.

In Exercises 59 - 64, assume that θ is an acute angle in a right triangle and compute the requested side.

- 59. If $\theta = 12^{\circ}$ and the side adjacent to θ has length 4, how long is the hypotenuse?
- 60. If $\theta = 78.123^{\circ}$ and the hypotenuse has length 5280, how long is the side adjacent to θ ?
- 61. If $\theta = 59^{\circ}$ and the side opposite θ has length 117.42, how long is the hypotenuse?
- 62. If $\theta = 5^{\circ}$ and the hypotenuse has length 10, how long is the side opposite θ ?
- 63. If $\theta = 5^{\circ}$ and the hypotenuse has length 10, how long is the side adjacent to θ ?
- 64. If $\theta = 37.5^{\circ}$ and the side opposite θ has length 306, how long is the side adjacent to θ ?

In Exercises 65 - 68, let θ be the angle in standard position whose terminal side contains the given point then compute $\cos(\theta)$ and $\sin(\theta)$.

65. P(-7, 24) 66. Q(3, 4) 67. R(5, -9) 68. T(-2, -11)