Worksheet 14 - The Unit Circle: Sine and Cosine (\$6.2)

Exercises 1-20, compute the exact value of the cosine and sine of the given angle.

1. $\theta=0$
2. $\theta=\frac{\pi}{4}$
3. $\theta=\frac{\pi}{3}$
4. $\theta=\frac{\pi}{2}$
5. $\theta=\frac{2 \pi}{3}$
6. $\theta=\frac{3 \pi}{4}$
7. $\theta=\pi$
8. $\theta=\frac{7 \pi}{6}$
9. $\theta=\frac{5 \pi}{4}$
10. $\theta=\frac{4 \pi}{3}$
11. $\theta=\frac{3 \pi}{2}$
12. $\theta=\frac{5 \pi}{3}$
13. $\theta=\frac{7 \pi}{4}$
14. $\theta=\frac{23 \pi}{6}$
15. $\theta=-\frac{13 \pi}{2}$
16. $\theta=-\frac{43 \pi}{6}$
17. $\theta=-\frac{3 \pi}{4}$
18. $\theta=-\frac{\pi}{6}$
19. $\theta=\frac{10 \pi}{3}$
20. $\theta=117 \pi$

In Exercises 21-30, compute the requested value.
21. If $\sin (\theta)=-\frac{7}{25}$ with θ in Quadrant IV, what is $\cos (\theta)$?
22. If $\cos (\theta)=\frac{4}{9}$ with θ in Quadrant I, what is $\sin (\theta)$?
23. If $\sin (\theta)=\frac{5}{13}$ with θ in Quadrant II, what is $\cos (\theta)$?
24. If $\cos (\theta)=-\frac{2}{11}$ with θ in Quadrant III, what is $\sin (\theta)$?
25. If $\sin (\theta)=-\frac{2}{3}$ with θ in Quadrant III, what is $\cos (\theta)$?
26. If $\cos (\theta)=\frac{28}{53}$ with θ in Quadrant IV, what is $\sin (\theta)$?
27. If $\sin (\theta)=\frac{2 \sqrt{5}}{5}$ and $\frac{\pi}{2}<\theta<\pi$, what is $\cos (\theta)$?
28. If $\cos (\theta)=\frac{\sqrt{10}}{10}$ and $2 \pi<\theta<\frac{5 \pi}{2}$, what is $\sin (\theta)$?
29. If $\sin (\theta)=-0.42$ and $\pi<\theta<\frac{3 \pi}{2}$, what is $\cos (\theta) ?$
30. If $\cos (\theta)=-0.98$ and $\frac{\pi}{2}<\theta<\pi$, what is $\sin (\theta) ?$

In Exercises 31-39, compute all of the angles which satisfy the given equation.
31. $\sin (\theta)=\frac{1}{2}$
32. $\cos (\theta)=-\frac{\sqrt{3}}{2}$
33. $\sin (\theta)=0$
34. $\cos (\theta)=\frac{\sqrt{2}}{2}$
35. $\sin (\theta)=\frac{\sqrt{3}}{2}$
36. $\cos (\theta)=-1$
37. $\sin (\theta)=-1$
38. $\cos (\theta)=\frac{\sqrt{3}}{2}$
39. $\cos (\theta)=-1.001$

In Exercises 40-48, solve the equation for t.
40. $\cos (t)=0$
41. $\sin (t)=-\frac{\sqrt{2}}{2}$
42. $\cos (t)=3$
43. $\sin (t)=-\frac{1}{2}$
44. $\cos (t)=\frac{1}{2}$
45. $\sin (t)=-2$
46. $\cos (t)=1$
47. $\sin (t)=1$
48. $\cos (t)=-\frac{\sqrt{2}}{2}$

In Exercises 49-54, use a calculator or computer to approximate the given value to three decimal places. Make sure your device is in the proper angle measurement mode!
49. $\sin \left(78.95^{\circ}\right)$
50. $\cos (-2.01)$
51. $\sin (392.994)$
52. $\cos \left(207^{\circ}\right)$
53. $\sin \left(\pi^{\circ}\right)$
54. $\cos (e)$

In Exercises $55-58$, compute the measurement of the missing angle and the lengths of the missing sides.
55. Compute θ, b, and c.

56. Compute θ, a, and c.

57. Compute α, a, and b.

58. Compute β, a, and c.

In Exercises 59-64, assume that θ is an acute angle in a right triangle and compute the requested side.
59. If $\theta=12^{\circ}$ and the side adjacent to θ has length 4 , how long is the hypotenuse?
60. If $\theta=78.123^{\circ}$ and the hypotenuse has length 5280 , how long is the side adjacent to θ ?
61. If $\theta=59^{\circ}$ and the side opposite θ has length 117.42 , how long is the hypotenuse?
62. If $\theta=5^{\circ}$ and the hypotenuse has length 10 , how long is the side opposite θ ?
63. If $\theta=5^{\circ}$ and the hypotenuse has length 10 , how long is the side adjacent to θ ?
64. If $\theta=37.5^{\circ}$ and the side opposite θ has length 306 , how long is the side adjacent to θ ?

In Exercises 65-68, let θ be the angle in standard position whose terminal side contains the given point then compute $\cos (\theta)$ and $\sin (\theta)$.
65. $P(-7,24)$
66. $Q(3,4)$
67. $R(5,-9)$
68. $T(-2,-11)$

