## Worksheet 6 KEY - Quadratic Functions (\$4.1)

1. $f(x)=x^{2}+2$ (this is both forms!)

No $x$-intercepts
$y$-intercept $(0,2)$
Domain: $(-\infty, \infty)$
Range: [2, $\infty$ )
Decreasing on $(-\infty, 0]$
Increasing on $[0, \infty)$
Vertex $(0,2)$ is a minimum
Axis of symmetry $x=0$

2. $f(x)=-(x+2)^{2}=-x^{2}-4 x-4$
$x$-intercept $(-2,0)$
$y$-intercept $(0,-4)$
Domain: $(-\infty, \infty)$
Range: $(-\infty, 0]$
Increasing on $(-\infty,-2]$
Decreasing on $[-2, \infty)$
Vertex $(-2,0)$ is a maximum
Axis of symmetry $x=-2$

3. $f(x)=x^{2}-2 x-8=(x-1)^{2}-9$
$x$-intercepts $(-2,0)$ and $(4,0)$
$y$-intercept $(0,-8)$
Domain: $(-\infty, \infty)$
Range: $[-9, \infty)$
Decreasing on $(-\infty, 1]$
Increasing on $[1, \infty)$
Vertex $(1,-9)$ is a minimum
Axis of symmetry $x=1$

4. $f(x)=-2(x+1)^{2}+4=-2 x^{2}-4 x+2$
$x$-intercepts $(-1-\sqrt{2}, 0)$ and $(-1+\sqrt{2}, 0)$
$y$-intercept $(0,2)$
Domain: $(-\infty, \infty)$
Range: $(-\infty, 4]$
Increasing on $(-\infty,-1$ ]
Decreasing on $[-1, \infty)$
Vertex $(-1,4)$ is a maximum
Axis of symmetry $x=-1$

5. $f(x)=2 x^{2}-4 x-1=2(x-1)^{2}-3$
$x$-intercepts $\left(\frac{2-\sqrt{6}}{2}, 0\right)$ and $\left(\frac{2+\sqrt{6}}{2}, 0\right)$
$y$-intercept $(0,-1)$
Domain: $(-\infty, \infty)$
Range: $[-3, \infty)$
Increasing on $[1, \infty)$
Decreasing on $(-\infty, 1]$
Vertex $(1,-3)$ is a minimum
Axis of symmetry $x=1$

6. $f(x)=-3 x^{2}+4 x-7=-3\left(x-\frac{2}{3}\right)^{2}-\frac{17}{3}$

No $x$-intercepts
$y$-intercept $(0,-7)$
Domain: $(-\infty, \infty)$
Range: $\left(-\infty,-\frac{17}{3}\right]$
Increasing on $\left(-\infty, \frac{2}{3}\right]$
Decreasing on $\left[\frac{2}{3}, \infty\right)$
Vertex $\left(\frac{2}{3},-\frac{17}{3}\right)$ is a maximum
Axis of symmetry $x=\frac{2}{3}$

7. $f(x)=x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$

No $x$-intercepts
$y$-intercept $(0,1)$
Domain: $(-\infty, \infty)$
Range: $\left[\frac{3}{4}, \infty\right)$
Increasing on $\left[-\frac{1}{2}, \infty\right)$
Decreasing on $\left(-\infty,-\frac{1}{2}\right]$
Vertex $\left(-\frac{1}{2}, \frac{3}{4}\right)$ is a minimum
Axis of symmetry $x=-\frac{1}{2}$

8. $f(x)=-3 x^{2}+5 x+4=-3\left(x-\frac{5}{6}\right)^{2}+\frac{73}{12}$ $x$-intercepts $\left(\frac{5-\sqrt{73}}{6}, 0\right)$ and $\left(\frac{5+\sqrt{73}}{6}, 0\right)$
$y$-intercept $(0,4)$
Domain: $(-\infty, \infty)$
Range: $\left(-\infty, \frac{73}{12}\right]$
Increasing on $\left(-\infty, \frac{5}{6}\right]$
Decreasing on $\left[\frac{5}{6}, \infty\right)$
Vertex $\left(\frac{5}{6}, \frac{73}{12}\right)$ is a maximum
Axis of symmetry $x=\frac{5}{6}$

9. $f(x)=x^{2}-\frac{1}{100} x-1=\left(x-\frac{1}{200}\right)^{2}-\frac{40001}{40000}$ $x$-intercepts $\left(\frac{1+\sqrt{40001}}{200}\right)$ and $\left(\frac{1-\sqrt{40001}}{200}\right)$
$y$-intercept $(0,-1)$
Domain: $(-\infty, \infty)$
Range: $\left[-\frac{40001}{40000}, \infty\right)$
Decreasing on $\left(-\infty, \frac{1}{200}\right]$
Increasing on $\left[\frac{1}{200}, \infty\right)$
$\operatorname{Vertex}\left(\frac{1}{200},-\frac{40001}{40000}\right)$ is a minimum
Axis of symmetry $x=\frac{1}{200}$

10. The vertex is (approximately) $(29.60,22.66)$, which corresponds to a maximum fuel economy of 22.66 miles per gallon, reached sometime between 2009 and 2010 ( $29-30$ years after 1980.) Unfortunately, the model is only valid up until 2008 ( 28 years after 1908.) So, at this point, we are using the model to predict the maximum fuel economy.
11. $64^{\circ}$ at 2 PM ( 8 hours after 6 AM.)
12. 5000 pens should be produced for a cost of $\$ 200$.
13. 8 feet by 16 feet; maximum area is 128 square feet.
14. 2 seconds.
15. The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.
16. The hammer reaches a maximum height of approximately 13.62 feet. The hammer is in the air approximately 1.61 seconds.

