Worksheet 6 KEY - Quadratic Functions (§4.1)

- 1. $f(x) = x^2 + 2$ (this is both forms!) No *x*-intercepts *y*-intercept (0, 2) Domain: $(-\infty, \infty)$ Range: $[2, \infty)$ Decreasing on $(-\infty, 0]$ Increasing on $[0, \infty)$ Vertex (0, 2) is a minimum Axis of symmetry x = 0
- 2. $f(x) = -(x+2)^2 = -x^2 4x 4$ x-intercept (-2,0) y-intercept (0,-4) Domain: (-\infty,\infty) Range: (-\infty,0] Increasing on (-\infty,-2] Decreasing on [-2,\infty) Vertex (-2,0) is a maximum Axis of symmetry x = -2
- 3. $f(x) = x^2 2x 8 = (x 1)^2 9$ x-intercepts (-2, 0) and (4, 0)y-intercept (0, -8)Domain: $(-\infty, \infty)$ Range: $[-9, \infty)$ Decreasing on $(-\infty, 1]$ Increasing on $[1, \infty)$ Vertex (1, -9) is a minimum Axis of symmetry x = 1
- 4. $f(x) = -2(x+1)^2 + 4 = -2x^2 4x + 2$ x-intercepts $(-1 - \sqrt{2}, 0)$ and $(-1 + \sqrt{2}, 0)$ y-intercept (0, 2)Domain: $(-\infty, \infty)$ Range: $(-\infty, 4]$ Increasing on $(-\infty, -1]$ Decreasing on $[-1, \infty)$ Vertex (-1, 4) is a maximum Axis of symmetry x = -1

5. $f(x) = 2x^2 - 4x - 1 = 2(x - 1)^2 - 3$ x-intercepts $\left(\frac{2-\sqrt{6}}{2}, 0\right)$ and $\left(\frac{2+\sqrt{6}}{2}, 0\right)$ y-intercept (0, -1)Domain: $(-\infty, \infty)$ Range: $[-3, \infty)$ Increasing on $[1, \infty)$ Decreasing on $(-\infty, 1]$ Vertex (1, -3) is a minimum Axis of symmetry x = 1

6. $f(x) = -3x^2 + 4x - 7 = -3\left(x - \frac{2}{3}\right)^2 - \frac{17}{3}$ No *x*-intercepts *y*-intercept (0, -7) Domain: $(-\infty, \infty)$ Range: $(-\infty, -\frac{17}{3}]$ Increasing on $(-\infty, \frac{2}{3}]$ Decreasing on $\left[\frac{2}{3}, \infty\right)$ Vertex $\left(\frac{2}{3}, -\frac{17}{3}\right)$ is a maximum Axis of symmetry $x = \frac{2}{3}$

7. $f(x) = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$ No *x*-intercepts *y*-intercept (0, 1) Domain: $(-\infty, \infty)$ Range: $\left[\frac{3}{4}, \infty\right)$ Increasing on $\left[-\frac{1}{2}, \infty\right)$ Decreasing on $\left(-\infty, -\frac{1}{2}\right]$ Vertex $\left(-\frac{1}{2}, \frac{3}{4}\right)$ is a minimum Axis of symmetry $x = -\frac{1}{2}$

- 8. $f(x) = -3x^2 + 5x + 4 = -3\left(x \frac{5}{6}\right)^2 + \frac{73}{12}$ x-intercepts $\left(\frac{5-\sqrt{73}}{6}, 0\right)$ and $\left(\frac{5+\sqrt{73}}{6}, 0\right)$ y-intercept (0, 4)Domain: $(-\infty, \infty)$ Range: $\left(-\infty, \frac{73}{12}\right]$ Increasing on $\left(-\infty, \frac{5}{6}\right]$ Decreasing on $\left[\frac{5}{6}, \infty\right)$ Vertex $\left(\frac{5}{6}, \frac{73}{12}\right)$ is a maximum Axis of symmetry $x = \frac{5}{6}$
- 9. $f(x) = x^2 \frac{1}{100}x 1 = \left(x \frac{1}{200}\right)^2 \frac{40001}{40000}$ x-intercepts $\left(\frac{1+\sqrt{40001}}{200}\right)$ and $\left(\frac{1-\sqrt{40001}}{200}\right)$ y-intercept (0, -1)Domain: $(-\infty, \infty)$ Range: $\left[-\frac{40001}{40000}, \infty\right)$ Decreasing on $\left(-\infty, \frac{1}{200}\right]$ Increasing on $\left[\frac{1}{200}, \infty\right)$ Vertex $\left(\frac{1}{200}, -\frac{40001}{40000}\right)$ is a minimum Axis of symmetry $x = \frac{1}{200}$
 - 10. The vertex is (approximately) (29.60, 22.66), which corresponds to a maximum fuel economy of 22.66 miles per gallon, reached sometime between 2009 and 2010 (29 30 years after 1980.) Unfortunately, the model is only valid up until 2008 (28 years after 1908.) So, at this point, we are using the model to *predict* the maximum fuel economy.

'n

3

- 11. 64° at 2 PM (8 hours after 6 AM.)
- 12. 5000 pens should be produced for a cost of \$200.
- 13. 8 feet by 16 feet; maximum area is 128 square feet.
- 14. 2 seconds.
- 15. The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.
- 16. The hammer reaches a maximum height of approximately 13.62 feet. The hammer is in the air approximately 1.61 seconds.