- Each question is followed by space to write your answer. Write your solutions neatly in the space below the question.
- Clearly indicate your answer and the reasoning used to arrive at that answer. Unsupported answers may not receive credit.
- You must give exact answers, rather than decimal approximations. Approximations of the answers will not receive credit.
- You may use a calculator, but not one which has symbolic manipulation capabilities.
- Turn off your cell phones, and do not wear ear-plugs during the exam.
- No books or notes may be used.
- Additional paper for scratch work is available upon request.

Name: \qquad

Section:

\qquad

Last four digits of student identification number:

Question	Score	Total
1		$10=5+5$
2		$12=8+2+2$
3		$10=5+5$
4		$16=8+8$
5		$14=3+5+6$
6		6
7		4
8		$14=6+8$
9		$14=6+8$
		100

1. Consider the function $f(x)=\frac{8}{x-9}$ and $g(x)=x^{2}-16$.
(a) Evaluate $g(f(1))$.

$$
g(f(1))=g(-1)=(-1)^{2}-16=-15
$$

(b) What is the domain of the composite function $h(x)=f(g(x))$? Justify your answer.

$$
h(x)=\frac{8}{\left(x^{2}-16\right)-9}=\frac{8}{x^{2}-25}=\frac{8}{(x-5)(x+5)} .
$$

Since division by zero is the only thing we must avoid in this case, the domain of f is given by

$$
D(f)=\{x \in \mathbb{R}: x \neq 5 \text { and } x \neq-5\} .
$$

2. Let $f(x)=\frac{2 x-1}{3 x+2}$.
(a) If f^{-1} is the inverse function of f, give a formula for $f^{-1}(x)$.

$$
\begin{aligned}
y & =\frac{2 x-1}{3 x+2} \\
y(3 x+2) & =2 x-1 \\
3 y x+2 y & =2 x-1 \\
3 y x-2 x & =-2 y-1 \\
x(3 y-2) & =-2 y-1 \\
x & =\frac{-2 y-1}{3 y-2}
\end{aligned}
$$

Therefore, $f^{-1}(x)=\frac{-2 x-1}{3 x-2}=-\frac{2 x+1}{3 x-2}$
(b) State the domain of f^{-1}.

The domain of f^{-1} is $D\left(f^{-1}\right)=\{x \in \mathbb{R}: x \neq 2 / 3\}$.
(c) State the range of f^{-1}, using the relationship between f and f^{-1}.

The range of f^{-1} coincides with the domain of f, so

$$
R\left(f^{-1}\right)=\{y \in \mathbb{R}: y \neq-2 / 3\}
$$

3. Let f and g be two functions satisfying the following conditions:

$$
\lim _{x \rightarrow-3} f(x)=-6 \quad, \quad \lim _{x \rightarrow-3} g(x)=9
$$

Use the limit laws to compute the following limits.
(a) $\lim _{x \rightarrow-3}\left(\frac{f(x)}{2}+g(x) \log _{3}\left(x^{2}\right)\right)$.

$$
\lim _{x \rightarrow-3}\left(\frac{f(x)}{2}+g(x) \log _{3}\left(x^{2}\right)\right)=\frac{-6}{2}+9 \cdot \log _{3}(9)=-3+18=15
$$

(b) $\lim _{x \rightarrow-3} \sqrt{2 x f(x)}$.

Since $\lim _{x \rightarrow-3} 2 x f(x)=2(-3)(-6)=36>0$,

$$
\lim _{x \rightarrow-3} \sqrt{2 x f(x)}=\sqrt{36}=6 .
$$

4. Calculate each of the following limits, if they exist. If a limit does not exist, write "DNE" in the space provided, together with an explanation of why the limit does not exist.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{25-x}-5}{x}$

For $x \neq 0$, it holds that

$$
\begin{aligned}
\frac{\sqrt{25-x}-5}{x} & =\frac{\sqrt{25-x}-5}{x} \frac{\sqrt{25-x}+5}{\sqrt{25-x}+5} \\
& =\frac{(25-x)-25}{x(\sqrt{25-x}+5)} \\
& =\frac{-1}{\sqrt{25-x}+5} .
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{25-x}-5}{x}=\lim _{x \rightarrow 0} \frac{-1}{\sqrt{25-x}+5}=\frac{-1}{\sqrt{25}+5}=-\frac{1}{10}
$$

(b) $\lim _{h \rightarrow 0} \frac{\frac{5}{x+h}-\frac{5}{x}}{h}$

For $h \neq 0$, we have

$$
\frac{\frac{5}{x+h}-\frac{5}{x}}{h}=\frac{\frac{5 x-5(x+h)}{x(x+h)}}{h}=\frac{-5 h}{x(x+h) h}=\frac{-5}{x(x+h)} .
$$

Therefore,

$$
\lim _{h \rightarrow 0} \frac{\frac{5}{x+h}-\frac{5}{x}}{h}=\frac{-5}{x(x+h)}=-\frac{5}{x^{2}} .
$$

5. Suppose that the height (in meters) of a ball, t seconds after it is launched from the ground, is given by $H(t)=-5 t^{2}+15 t$.
(a) Find the average velocity of the ball over the time interval $2 \leq t \leq 3$.

$$
\frac{H(3)-H(2)}{3-2}=\frac{0-10}{1}=-10
$$

The average velocity is -10 meters per second.
(b) Find the average velocity of the ball over the time interval $[2, t]$, where $t>2$. Simplify your answer.

When $t \neq 2$,

$$
\begin{aligned}
\frac{H(t)-H(2)}{t-2} & =\frac{-5 t^{2}+15 t-10}{t-2}=\frac{-5\left(t^{2}-3 t+2\right)}{t-2} \\
& =\frac{-5(t-2)(t-1)}{t-2}=-5(t-1)
\end{aligned}
$$

(c) Use your answer in (b) to find the instantaneous velocity of the ball 2 seconds into its flight.

We have

$$
\lim _{t \rightarrow 2} \frac{H(t)-H(2)}{t-2}=\lim _{t \rightarrow 2}-5(t-1)=-5,
$$

so the instantaneous velocity is -5 meters per second.
6. Use the Intermediate Value Theorem to argue that the equation $5^{x}-6 x=0$ has a solution in the interval $(0,1)$. Make sure to confirm that the conditions of this theorem are satisfied.

Letting $f(x)=5^{x}-6 x$, we see that f is continuous on \mathbb{R} (and, hence, on $[0,4]$) because it is the difference of an exponential function and a polynomial, both of which are continuous on \mathbb{R}. We also see that $f(0)=1-0=1>0$ and $f(1)=5-6=-1<0$. Since $-1<0<1$, the Intermediate Value Theorem guarantees a solution x of $f(x)=5^{x}-6 x=0$ in the interval $(0,1)$.
7. Suppose that g is a function such that $g^{\prime}(1)=-5$, and the graph of g contains the point $(1,3)$. Give an equation of the tangent line to the graph of g at the point $(1,3)$.

The equation of the tangent line, first in point-slope form and then in slopeintercept form, is

$$
y=-5(x-1)+3=-5 x+8
$$

8. (a) State the formal limit definition of the derivative of a function at a point a.

A function f has a derivative at a number a provided the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. If this limit exists, we denote it by $f^{\prime}(a)$.
Alternatively, we can define $f^{\prime}(a)$ by $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$, provided this limit exists.
(b) Let $f(x)=\left\{\begin{array}{ll}x^{2} & , x<0 \\ 2 x & , x \geq 0\end{array}\right.$.

Using the definition of a derivative, explain why $f^{\prime}(0)$ does not exist.
We have the following one-sided limits:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{+}} x=0 \\
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{-}} \frac{2 x}{x}=\lim _{x \rightarrow 0^{-}} 2=2
\end{aligned}
$$

Because these two limits disagree, f is not differentiable at 0 .
9. (a) Suppose that the domain of the function f is \mathbb{R}. Formally define what it means for f to be continuous at a.

A function f is continuous at a number a provided $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) Let

$$
f(x)= \begin{cases}b x+9, & \text { if } x<5 \\ c, & \text { if } x=5 \\ x^{2}+b, & \text { if } x>5\end{cases}
$$

Give all pairs of numbers, b and c, so that f is continuous at $a=5$. If no such pairs exist, state that " f cannot be made continuous at $a=5$ ".

It holds that $f(5)=c$. We also have the two one-sided limits

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}} b x+9=5 b+9 \\
& \lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}} x^{2}+b=25+b
\end{aligned}
$$

If f is to be continuous at 5 , these two limits must be equal, and agree with the value of f at 5 .

$$
5 b+9=25+b \quad, \quad 4 b=16 \quad, \quad b=4
$$

With $b=4$, the common limit is 29 . Therefore, $b=4, c=29$ is the only pair of numbers for which f is continuous at 5 .

