Answer all of the questions 1-7 and two of the questions 8-10. Please indicate which problem is not to be graded by crossing through its number in the table below.

Additional sheets are available if necessary. No books or notes may be used. Please, turn off your cell phones and do not wear ear-plugs during the exam. You may use a calculator, but not one which has symbolic manipulation capabilities. Please:

1. clearly indicate your answer and the reasoning used to arrive at that answer (unsupported answers may not receive credit),
2. give exact answers, rather than decimal approximations to the answer (unless otherwise stated).
Each question is followed by space to write your answer. Please write your solutions neatly in the space below the question. You are not expected to write your solution next to the statement of the question.

Name: KEY

Section: \qquad
Last four digits of student identification number: \qquad

Question	Score	Total
1		9
2		8
3		13
4		8
5		10
6		8
7		10
8		15
9		15
10		15
Free	4	4
		100

(1) (9 points) Consider the function

$$
g(x)=\frac{x}{x^{2}+1}
$$

which has derivatives

$$
g^{\prime}(x)=\frac{\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}
$$

and

$$
g^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
$$

Give exact answers to the following questions!
(a) (6 points) Find the intervals where the graph of g is concave up and concave down.
(4) $\quad g^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}=\frac{2 x(x+\sqrt{3})(x-\sqrt{3})}{\left(x^{2}+1\right)^{3}}$
(4)

(2) Cacare $y: g^{\prime \prime}(x)>0$ $(-\sqrt{3}, 0),(\sqrt{3}, \infty)$

x	$2 x(x+\sqrt{3})(x-\sqrt{3})$	
-2	$-4(-2+\sqrt{3})(-2-\sqrt{3})$	<0
-1	$-2(-1+\sqrt{3})(-1-\sqrt{3})$	>0
+1	<0	

(2) Careve dave: $g^{k}(x)<0 \quad(-\infty,-\sqrt{3}),(0, \sqrt{3})$
(b) (3 points) Find the inflection points of g (x - and y-coordinates).

Inflection pts acer when s " changes sign. From the sign graph of $\delta^{"}$ chow, then
((1) occurat $x=-\sqrt{3}, x=0, x=\sqrt{3}$
The y-vales are $g(-\sqrt{3})=-\frac{B}{4}, 0, \frac{\sqrt{3}}{4}$
(a) Interval (s) where the graph of g is concave up: $(-\sqrt{3}, 0) \quad(\sqrt{3}, \infty)$
concave down: $(-\infty,-\sqrt{3}),(0, \sqrt{3})$
(b) Inflection points): $-\sqrt{3}, 0, \sqrt{3} \quad y$-values $-\frac{\sqrt{3}}{4}, 0, \frac{\sqrt{3}}{4}$
(2) (8 points) Find the absolute maximum and minimum values of the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2
$$

on the interval $[-1,4]$.

(2)

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 x+9 \\
& =3\left(x^{2}-4 x+3\right) \\
& =3(x-1)(x-3)
\end{aligned}
$$

\therefore critical poichat

$$
x=1, x=3
$$

(2) Test f at critical points ard end point: (closed interval test)
(1)

x	$f(x)$
-1	-14
1	6
3	2
4	6

(4) The absolute miniwuon is $f(-1)=-14$
(2) waxing is $f(4)=6=f(4)$

Both value n if x 5 for fuel credit
(a) Absolute maximum value \qquad 6 at $x=$ \qquad 1,4
(b) Absolute minimum value \qquad -14 at $x=$ \qquad -1

Give exact answer a to the followhergifiedione!
(a) (4 points) Find the domain of f.

Domainis $\left\{x: x^{2}-6 x+11\right.$ mo $\}$
Siree $x^{2}-6 x+11=x^{2}-6 x+9+2=(x-3)^{2}+2$, $x^{2}-6 x+11 \geqslant 2$ so the domain of f is all $x \in \mathbb{R}$
(b) (3 points) Find the critical number (s) of f.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x-6}{x^{2}-6 x+11} \quad f^{\prime}(x)=0 \text { if } \quad 2 x-6=0 \\
& \therefore \quad 2 k=6 \\
& x=3
\end{aligned}
$$

(c) (3 points) Find the intervals of increase and decrease for f.

The sig $f f^{\prime}(x)$ is the sine $(2$ en, so:

one can os cheek:

x	$f(x)$
0	-6
4	$2 / 3$

Inckore:

$$
[3, \infty)
$$

Dormer $(-\infty, 3)$
(d) (3 points) Find the local extremum or extrema of f. Be sure to give both the x coordinate and the value of $f(x)$. Indicate whether each is a local maximum or a local minimum.

The only load exctremum orecon of $x=3$.

$$
\text { Hove } f(3)=\ln \left(3^{2}-6.3+11\right)=\ln (9-18+11)=\ln (2)
$$

By the first derivation test, $x=3$ is a lace minimum
(a) Domain: $(-\infty, \infty)$
(b) Critical numbers):
(c) Interval (s) of increase: $x=3$
(d) Local extremum/extrema: $\frac{x=3, f(3)=2,2, \text { gere minimum }}{3}$
(4) (8 points) Let $g(x)=\sqrt{25+x}$. Find the linear approximation to g at $x=0$. Use the linear approximation to estimate $\sqrt{25.06}$.
(1) $g(0)=5$
(2) $g^{\prime}(x)=\frac{1}{2 \sqrt{25+x}}$

$$
\left\{g^{\prime}(0)=\frac{1}{2.5}=\frac{1}{10}\right.
$$

(2) $\therefore L(x)=5+\frac{x}{10}$

The liner opproxicuation 0

$$
L(x)=g(0)+g^{\prime}(0) \cdot x
$$

(5) (10 points) Find the general antiderivative of each of the following functions.
(a) (3 points) $f(t)=3 \sec ^{2}(t)+\cos (t)$
(3)

$$
F(t)=3 \operatorname{ton}(t)+\sin (t)+C
$$

(b) (3 points) $g(x)=x^{2}-2 x+4 e^{x}$
(3) $\quad G(x)=\frac{x^{3}}{3}-x^{2}+4 e^{x}+C$
(c) (4 points) $h(w)=w^{3 / 2}+1 / w$
(4) $H(w)=\frac{2}{5} w^{5 / 2}+\ln |w|+C$
(a) General antiderivative of $f(t)+3 \tan (k)+3 \pi(4)+C$
(b) General antiderivative of $g(x)$ is $\frac{\frac{e^{2}}{0}-x^{2}+40^{k}+C \text { C }}{0}$
(c) General antiderivative of $h(w)$ is $\left.\quad \frac{2}{5} \omega^{5 / 2}+\ln / \omega \right\rvert\,+C$
(6) (8 points) A particle is moving with acceleration $a(t)=10 \sin (t)+3 \cos (t)$ meters $/ \mathrm{sec}^{2}$. Its initial position is $s(0)=0$ meters and its initial velocity is $v(0)=5$ meters per second.
(a) (4 points) Find $v(t)$, the velocity of the particle, at any time t. Be sure to specify the units.
(2)

$$
\begin{aligned}
s(t) & =\int[10 \sin (t)+3 \cos (t)] d t \\
& =-10 \cos (t)+3 \sin (t)+C_{1}
\end{aligned}
$$

Since $v(0)=5 \mathrm{~cm}(\mathrm{sec}$,
(2)

$$
\begin{aligned}
-10.1+3 \cdot 0+c_{1} & =5 \\
c_{1} & =15
\end{aligned}
$$

$$
\therefore v(t)=-10 \cos (t)+3 \sin (t)+15 \quad n-/ \sec
$$

(b) (4 points) Find $s(t)$, the position of the particle, any clime t. Be sure to specify the units.
(2)

$$
\begin{aligned}
s(t) & =\int(-10 \cos (t)+3 \sin (t)+15) d t \\
& =-10 \sin (t)-3 \cos (t)+15 t+C_{2}
\end{aligned}
$$

$$
\begin{aligned}
S(0) & =0 \text { so } \\
& -10.0-3.1+15.0+c_{2}=0
\end{aligned}
$$

(2)

$$
\begin{gathered}
\therefore \quad c_{2}=3 \\
s(t)=-10 \sin (t)-3 \cos (t)+15 t+3 n
\end{gathered}
$$

(8) $v(t)=-10 \cos t)+3 \sin +4+45^{\circ}$ miter
(b) $s(t)=-10 \sin (t)-3 \cos (t)+15 t+3 m$
(7) (10 points) Let $g(x)=\frac{3 x^{2}+1}{x^{2}-x-6}$
(a) (4 points) Find the horizontal asymptotes, if any. Be sure to justify your work!

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+1}{x^{2}-x-6}=\lim _{x \rightarrow+\infty} \frac{6 x}{2 x-1}=\lim _{x \rightarrow+\infty} \quad \frac{6}{2}=3
$$

$<$
by L'Hespite, or $\left.\lim _{x \rightarrow \infty}^{(t y p e} \infty / \infty\right)\left(\frac{3 x^{2}+1}{x^{2}-x-6}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(3+4 x^{2}\right)}{x^{2}\left(1-4 / x^{-6} / x^{2}\right)}=3\right.$
Similarly

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}+1}{x^{2}-x-6}=\lim _{x+-\infty} \frac{6 x}{2 x-1}=\lim _{x \rightarrow-\infty} \frac{6}{2}=13
$$

(4) So $y=3$ is the unique horizontal asymptote
(b) (6 points) Find all vertical asymptotes. Find the left- and right-hand limits of g at each vertical asymptote. Be sure to justify your work!
(ti) $g(x)=\frac{3 x^{2}+1}{(x+2)(x-3)}$ so verficed asymptote orcurat $x=-2$ and $x=3$
Sine $3 x^{2}+1>0$ the eff-and n fift-houl lint at $x=-2$ al $x=3$
(1) are determined by the sign of the denominator $(x+2)(x-3)$:

$$
\operatorname{sig}(x+2)(x-3):
$$

Limits
© (t)
Here $\lim _{x \rightarrow-2^{-}} g(x)=+\infty$

$$
\lim _{x \rightarrow-2^{+}} g(x)=-\infty
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} g(x)=-\infty \\
& \lim _{x \rightarrow 3^{+}} g(x)=+\infty
\end{aligned}
$$

(a) Horizontal asymptotes) $y=3$
(b) Vertical asymptote (s) \qquad $x=-2, \quad x=+3$

Work two of the following three problems. Indicate the problem that is not to be graded by crossing through its number on the front of the exam.
(8) (15 points)
(a) (5 points) State the Mean Value Theorem. Be sure to state all hypotheses as well as the conclusion.

Suppose that f is contiucon on $[a, 4]$ anal differentiable on (a, b). Thou, there exists a point $c \in(a, b)$ so that

$$
f^{\prime}(c)=\frac{f(b)-f(c)}{y-a} \quad \text { forme. (2) }
$$

(b) (6 points) Professor Perry drove from Lexington to Columbus, Ohio (a distance of 200 miles) on interstate highways where the speed limit is 65 miles per hour. On arrival in Columbus, he proudly told a former Calculus I student who is now a police officer that he had made the drive in only 2.5 hours. The officer promptly gave him a speeding ticket. Using the Mean i Value Theorem, explain how the police officer knew that Perry had been speeding.
(1) Let $s(t)$ be Parry's intone from Lexington.

Frow the tote:

$$
\begin{aligned}
& \text { (1) } s(0)=0 \text { miles } \\
& s(2.5)=200 \text { miles }
\end{aligned}
$$

Applying the M.U.T. to $s(t)$ a $[0,2.5]$, we see that for some fiche c between 0 and 2.5,
(2)

$$
\left.\delta^{\prime}(c)=V C_{c}\right)=\frac{200-0}{2.5-0}=80 \frac{\text { miles }}{\text { hour }}
$$

That is, ate some time during the trip, Perry
(1) was driving at 80 miles per hour.
(c) (5 points) Suppose that f is a function continuous on $[0,3]$, differentiable on $(0,3)$, that $-1 \leq f^{\prime}(x) \leq 4$, and $f(0)=5$. Based on this information, is it possible that $f(3)=20$? Explain why or why not using the Mean Value Theorem.

Apply the MUT to f an $[0,3]$. (since f is
(+1) continuous an $[0,3]$, differentiable on $(0,31)$.
(+1) $\frac{f(3)-f(0)}{3-0}=f^{\prime}(c)$ for some $c \in(0,3)$
(t)

$$
\begin{aligned}
& \therefore-3 \leq f(3)-f(0) \leq 12 \\
& \therefore-3 \leq f(3)-5 \leq 12 \\
& \therefore 2 \leqslant f(3) \leq 17
\end{aligned}
$$

Hence, it is not possible they $f(3)=20$.

Alternatively, ore can argue by contradiction: if $f(3)=20$,
(+3) $\frac{f(3)-f(0)}{3-u}=\frac{20-5}{3}=\frac{15}{3}=f^{\prime}(c)$ for some in $(0,3)$
(4) Sine $\frac{15}{3}>4$, it cannot be the can that $f(3)=20$.
(9) (15 points)
(a) (5 points) State L'Hospital's Rule.
(1) Suppose that f and g are differentiate oud $g_{-}^{\prime}(x) \neq 0$ or anopen interval that contains a (except jrossibly a). suppose that either (1) $\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow c} g(a)$ or

(2) $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g(x)}$ if the latter limit exist or is $\pm \infty$.
(b) (5 points) Find a and b so that

$$
\lim _{x \rightarrow 0} \frac{e^{4 x}-a-b x}{x^{2}}
$$

exists (that is, is finite), and find the value of the limit for these numbers a and b.

1) Let $f(x)=e^{4 x}-a-b x, f(x)=x^{2}$
$+2$
To have an indeterminate form on of type \%, we need $f(0)=1-a=0$ so $a=1$
(2)
(2) By L'Hospital's rule,

$$
\begin{aligned}
& \text { By L'Hospital's rule, } \\
& \lim _{x \rightarrow a}\left(\frac{e^{4 x}-a-b x}{x^{2}}\right)=\lim _{x \rightarrow a} \frac{4 e^{4 x}-b}{2 x} \quad \text { if the latter limit }
\end{aligned}
$$

exists. To hove an indeterminate form of tope \%, we must hove $4-b=0$ or $b=4$
(3) By the bore steps, $\lim _{x \rightarrow 0}\left(\frac{e^{4 x-x-4 x}}{x^{2}}\right)=\lim _{x \rightarrow 0}\left(\frac{4 c^{4 x}-4}{2 x}\right)$
(t)

$$
=\lim _{x \rightarrow 0}\left(\frac{16 c^{4} x}{2}\right)=8
$$

$$
a=\frac{1}{4}, b=1, \operatorname{limit}=\frac{8}{4}
$$

（c）（5 points）Use L＇Hogpital等 rule to determine

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (6 x)}
$$

$$
f(x)=\sin (2 x)
$$

（4）$g(x)=\tan (6 x)$
（4）Note $f(x) \rightarrow 0$ and $\delta(x) \rightarrow 0$ is $x \rightarrow 0$ ，so limit is an indeterminate form of type o $\frac{0}{\partial}$ ．

$$
(+3) \quad \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (6 x)} & =\lim _{x \rightarrow 0} \frac{3 \cos (3 x)}{6 \sec ^{2}(6 x)} \\
& = \\
& =\frac{3}{6} \\
& =1
\end{aligned}
$$

where wive used the substitution principle to evaluate the last limit．

The limit is \qquad
(10) (15 points) A box with a square base and an open top is to have a volume of $180 \mathrm{~cm}^{3}$. Material for the base costs $\$ 5$ per cm^{2} and material for the sides costs $\$ 3$ per cm^{2}. Find the dimensions of the cheapest box.

(2) Lat $\begin{aligned} x & =\text { width of box in } \mathrm{cm} \\ y & =\text { height } y \text { box }\end{aligned}$

Area of base $=x^{2}$
Area of 4 sides $=4 x y$
(t^{2}

$$
\cos t=Q=5 x^{2}+3.4 x y \text { dollars }
$$

using the constraint (k), $y=\frac{180}{x^{2}}$

42

$$
\begin{aligned}
\therefore Q(x) & =S x^{2}+12 x \cdot\left(\frac{180}{x^{2}}\right) \\
& =5 x^{2}+\frac{2160}{x}
\end{aligned}
$$

(1) Domain: $x \in(0, \infty)$

$$
Q^{\prime}(x)=10 x-\frac{2160}{x^{2}}=\frac{10 x^{3}-2160}{x^{2}}
$$

(43)

$$
\left\{\begin{array}{cc}
Q(x)=\frac{x^{2}}{x^{2}} \\
Q^{\prime}(8)=0 \text { if } \quad x^{3}=116 \text { or } \quad x=6 \\
\text { sig graph of } Q^{\prime}(x) & -\frac{1}{6}+ \\
x=6 & \text { is an absolute univ }
\end{array}\right.
$$

(61) By first derivative tot, $x=6$ is an absolute win.

x	$Q^{\prime}(x)$
10	$10-2160<1$
10	$100-\frac{2160}{100}>$

Not if $x=6,36 . y=180$ or $y=5$
Dimensions are $x=6 \mathrm{cmi}, y=5 \mathrm{~cm}$

